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Abstract 

Global agricultural systems are increasingly getting exposed to unprecedented shocks emanating from 
climate change. Uganda, whose main export crop is coffee with the sector employing over 5 million people 
in farms and post-harvest processes, has seen its coffee experiencing declining productivity as a result of 
adverse effects of climate change. Continuation of this trend will see the livelihood of over 1.7 million 
smallholder coffee farming households placed under threat. Climate smart practices including cultural pests 
and disease control, soil fertility and water retention, and intensification have been promoted to be adopted 
in a stepwise approach as a measure against the negative impacts of these adverse climate events. However, 
limited empirical evidence exists to show the impacts of adopting these climate smart practices on coffee 
productivity. This study contributes to this gap by deploying a multinomial endogenous switching 
regression model to investigate the determinants of adoption of these climate smart and sustainable coffee 
production practices and its impacts on coffee productivity. The results revealed that farmers’ education 
level, group membership, access to input dealers, information and credit significantly increased adoption 
of climate smart and sustainable coffee production practices. Sustainable yield increases are achieved when 
the recommended practices are adopted in combination and even higher yields are achieved when cultural 
pest and disease control practices are combined with either soil and water retention or intensification 
practices. The implication of this to policy is that climate smart practices should be promoted as 
combinations having cultural pest and disease control as one of the practices. 
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1. Introduction
It is an increasing phenomenon for the global agricultural crop production systems to get exposed
to unprecedented shocks emanating from climate change (IPCC, 2014). These shocks together
with increasing global temperatures will result in changes in suitability for agricultural production
(Fischer et al. 2002). Thus, presenting a huge threat to yield and welfare of farmers, especially
smallholder farmers in Sub-Saharan Africa (SSA) whose livelihood strongly depends on
agriculture (Oyetunde-Usman et al., 2020). More so, coffee farmers are more susceptible to these
climate changes and will be among the most affected given that coffee requires between three to
five years to mature and a significant investment is required to plant and maintain it (Bro et al.,
2019).

Uganda is Africa’s second largest coffee producer with 1.7 million smallholder coffee households, 
representing 10% of global coffee farms.  Three to four million bags of coffee are produced 
annually, accounting for 18% of the country’s annual exports (Bunn et al., 2019). The sector 
employs over five million people, both in the farms and post-harvesting processes, remaining the 
primary source of income and livelihood for the poor rural inhabitants in over 30 districts and 
contributing substantial foreign exchange earnings over the decades (Verter et al., 2015). Despite 
the enormous contribution of the crop to economic development of Uganda, coffee is experiencing 
declining levels of productivity, and this is of great concern among national and global 
stakeholders. It should be noted that in recent decades, the productive potential of the coffee-
growing regions has become increasingly compromised by the impacts of climate change with 
many coffee production areas becoming drier and hotter (Donovan and Poole 2014). The 
implication of this is that productivity has kept on declining even with increases in production 
area. Bunn et al. (2019) revealed that the area cultivated with coffee in Uganda expanded by 50% 
since 1990, but productivity within the same period has been declining.   

To address this mishap that is gradually crippling Uganda’s coffee sector, research institutions, 
government development agencies and policy makers came up with numerous climate smart and 
sustainable coffee production practices to be promoted for use among coffee farmers (Bunn et al., 
2019). Since variations in resource endowments among smallholder farmers could hinder efficient 
adoption of the proposed practices, it was recommended that such practices be broken down into 
four smaller, sequential, and incremental steps (also commonly referred to as the stepwise 
approach) to increase adoption. The first step constitutes low-cost practices, mainly routine and 
basic field management practices that ought to be practiced by every coffee farmer. This therefore 
implies that every farmer implementing only any or all of the practices under this step is a non-
adopter. Costs increase in steps that follow and all individuals implementing practices under the 
subsequent steps are categorized as adopters (see table 1).  

[Table 1 near here]. 

It was well thought out that through building up slowly, the farmer can obtain incremental 
increases in yields after each step, which may motivate them to re-invest part of the income to 
implement more practices of the next step to efficiently increase their yields (Bunn et al., 2019). 
Following this tremendous effort, this study utilizes a sample of 1231 coffee growing households 
that was obtained from the annual agricultural survey (2018/2019) data set collected by the Uganda 
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Bureau of Statistics to investigate (1) the drivers of adoption for the different climate smart and 
sustainable coffee production practices that have been promoted under the different steps and (2) 
assess the impact of adopting climate smart and sustainable production practices on coffee 
productivity. The two objectives were analyzed using the multinomial endogenous switching 
regression model. Key findings from the study indicate that the level of adoption of climate smart 
and sustainable coffee production practices was very low in Uganda and that access to credit, 
farmer group membership, access to input dealers, access to production information and education 
level of the farmer positively influenced adoption. With regard to the impact of adoption of the 
practices on coffee productivity, the findings from the study revealed that adoption of cultural pest 
and disease control in coffee production (C1 S0 I0) resulted in the highest productivity (yield) 
increase for the farmer (110% yield increase). The findings from this investigation will provide 
input for government entities like the Ministry of Agriculture, Animal Industry and Fisheries 
(MAAIF) for the development of a National Coffee Sustainability Plan that is still nonexistent. 
Private sector organizations like Uganda Coffee Development Authority (UCDA), National Union 
of Coffee Agribusiness and Farm Enterprises (NUCAFE) and coffee cooperatives will pick out 
evidence-based strategies for successful scaling of climate-smart and sustainable coffee production 
practices. Overall, the findings will offer a clear strategic plan for supporting producers and 
promoting sustainable coffee production while aligning production in the country with the broader 
objectives of the SDGs such as poverty reduction and ensuring food and nutrition security.   

The rest of the paper is structured as follows. first, we present the Conceptual/theoretical 
background to the paper, which is closely followed by the data section under which the statistical 
summaries are presented. The methods section comes in next after the data section and is 
immediately followed by the results and discussions section. Conclusion, Policy 
recommendations, Acknowledgments and references then proceed in order after the results section 
and lastly Tables are presented after the references section.  

2. Conceptual/theoretical background 
Agricultural production systems continue to suffer from the advancing effects of climate change. 
The coffee sector is one of the important sectors that has not been spared by this changing climate 
patterns. In Uganda for instance, about 25% of land that was deemed suitable for Arabica coffee 
has been lost due to climate change effects (Ovalle-Rivera et al., 2015). Likewise, coffee 
production is expected to reduce by 50%-75% due to loss of suitable land and decreasing yields 
(MWE, 2015). These forecasted effects accompanied by the increasingly high uncertainty around 
future changes of the climate in Uganda, have propelled stakeholders engaged in Uganda’s coffee 
sector to promote climate smart agricultural practices as mitigation measures to the adverse effects 
of climate change on coffee production. In most cases, a stepwise approach has been proposed for 
adoption of such practices to ensure that they are feasible for even the resource constrained farmers 
(Bunn et al., 2019). However, it must be noted that in reality, farmers are often faced by 
overlapping constraints, such as weeds, pest, and disease infestations, and low soil fertility and 
declining crop productivity (Dorfman, 1996; Khanna, 2001; Moyo and Veeman, 2004). Which 
necessitates they adopt the promoted packages simultaneously as complements, substitutes, or 
supplements if they are to receive highest possible returns and build sustainable agricultural system 
that is more resilient to shocks related to climate change. Overall, although there is evidence that 
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the promoted climate smart and sustainable coffee production practices play a great role in averting 
the negative impacts of climate change on coffee production, there exists a gap on the drivers of 
adoption of these practices and how they impact coffee productivity.  

Numerous studies have been previously conducted to investigate the drivers of adoption of climate 
smart agricultural practices by farmers. At household level for instance, Kansiime et al. (2014) 
showed that perception of rainfall variability, gender of the head of household, household size, and 
access to output markets, significantly increased the probability of the farmer recording an 
adaptation measure. On the other hand, access to off-farm income, input markets, and location of 
the farmer negatively affect adoption of technologies. Ali. (2021), deployed a multivariate model 
to investigate the determinants of the choice climate-smart practices among farm households in 
Northern Togo. Results of his study showed that factors that influence households’ choice of 
adaptation strategies include gender, household location, education level, family size, and 
allocated labor. Institutional factors including market access, access to credit, and extension 
services were also found to be key determinants in promoting the use of climate-smart practices. 
Oyetunde-Usman et al. (2020) employed multivariate probit and the ordered probit models to 
examine the determinants of adoption of multiple sustainable agricultural practices among 
smallholder farmers in Nigeria. Their empirical results showed that farmers’ adoption of different 
SAPs and their intensity of use depend significantly on factors such as the age of household head, 
gender, education, household size, access to extension services, and household wealth status. Bro 
et al. (2017) used an ordered probit model to assess the determinants of adoption of sustainable 
production practices by coffee producers in northern Nicaragua. Their findings showed that coffee 
farmers who belong to cooperatives adopted sustainable practices at higher rates than non-
members, and that the odds of adoption are higher for members than for non-members. 

Ojoko et al. (2017) revealed that education, membership of a social group and access to credit were 
significant determinants of CSA adoption in Sokoto State in Nigeria. Akrofi-Atiotianti et al. 
(2018), while investigating CSA adoption among cocoa farmers in Ghana, found that age and 
location of farms, farmers’ age, residential status and access to extension services influence CSA 
adoption in the cocoa farming system in Ghana. Aryal et al. (2018) studied the factors influencing 
the adoption of CSA practices by farmers in the Indo-Gangetic plains of India. Results of their 
study revealed that gender, education, social and economic capital, as well as farmers’ experience 
of climate risks and access to extension services and training were key determinants of CSA 
adoption among the farmers. Zakaria et al. (2020). fitted an Endogenous-Switching Poisson 
regression model to determine the drivers of farmers' participation in climate change capacity 
building programmes and the concomitant effect of participation on adoption intensity of Climate 
Smart Agricultural Practices (CSAPs). The study found that participation in climate change 
capacity building training is endogenous and is positively influenced by farmers' access to 
agricultural extension services and membership of farmer-based organizations (FBOs). 
Consequently, participation in capacity building training, family labor, and agricultural insurance 
significantly influenced farmers' CSAPs adoption intensity. Abegunde et al. (2019) used a 
Generalized Ordered Logit Regression (gologit) model to analyze the determinants of the adoption 
of Climate-Smart Agricultural practices by small-scale farming households in South Africa. 
Results from their study showed that educational status, farm income, farming experience, size of 
farmland, contact with agricultural extension, exposure to media, agricultural production activity, 
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membership of an agricultural association or group and the perception of the impact of climate 
change were found to be statistically significant and positively correlated with the level of CSA 
adoption. Furthermore, off-farm income and distance of farm to homestead were statistically 
significant but negatively correlated with the CSA level of adoption. The variation in the drivers 
of adoption of climate smart agricultural practices across the different studies reviewed herein is a 
clear indication of the heterogeneity that exists among farmers when making adoption decisions 
for the different climate smart packages that need to be investigated in order to inform wider 
uptake.  

3. Data  
This study made use of the Annual Agricultural Survey (2018/2019) dataset that was collected by 
Uganda Bureau of Statistics (UBOS) in close collaboration with the Ministry of Agriculture, 
Animal Industry and Fisheries (MAAIF) and Food and Agriculture Organization of the UN (FAO). 
The dataset from the AAS survey contains variables including farmer profiles, agricultural 
enterprises undertaken, agricultural inputs and sources, agricultural practices, access to 
information and other social amenities essential for agricultural production, which made it a good 
fit for the analysis conducted in this study.  

To keep within the focus of the study, only data entries from households that ventured in or were 
engaged in coffee production at the time of the survey were filtered and considered for use during 
analysis. Key variables of interest identified and used for the analysis included use of irrigation, 
engagement in agroforestry, use of agricultural inputs like fertilizers, access to weather 
information, credit facilities, use of improved seeds and new varieties, access to nurseries, coffee 
yield, harvesting, post-harvest and marketing data, and any other practices around coffee farming. 
Socioeconomic variables related to age of household head, gender of household head, household 
size, land ownership status, formal education levels, production shocks faced like drought, 
hailstorms, pests and diseases, access to extension services, distance from a market in kilometers, 
among others were also considered.  Full details of the variables used during the analysis and the 
sections under which they are recorded within the AAS dataset are summarized in the table 2 
below. 

[Table 2 near here]. 

Summary statistics for variables used in analysis 

Table 3 shows the summary statistics for the variables used in analysis. Climate smart practices 
include: cultural control of pests & diseases (C), enhancement of soil fertility & water retention 
(S) or intensification (I), with subscript 1 referring to adoption and 0 otherwise. Generally, the 
results reveal that non-adopters (C0 S0 I0) lag behind adopters with respect to most attributes. For 
instance, 16% of the farmers who adopted all the recommended practices (C1 S1 I1) reported to 
have accessed agricultural loans compared to only 9% of the non-adopters.  Similarly, 74% of the 
farmers who adopted all practices reported having access to input dealers/stores compared to only 
45% of the non-adopters. Furthermore, 37% of the farmers who adopted all practices accessed 
agricultural production information compared to only 14% of the non-adopters. More farmers in 
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the C1 S1 I1 category belonged to farmer groups (34%) compared to only 12% of the non-adopters. 
However, farmers who adopted only intensification practices only (C0 S0 I1) were approximately 
five years younger than both the non-adopters and full adopters (C1 S1 I1). On the other hand, 77% 
of the households that did not adopt any practice (C0 S0 I0) were male headed compared to only 
66% of the households that adopted all practices.  With regard to the region, the highest proportion 
of full adopters (76%) was in central Uganda while the highest proportion of non-adopters (42%) 
was found in the western region. This could be attributed to coffee being the main cash crop in the 
central region unlike the western region where banana is the major cash crop. 

 

[Table 3 near here]
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Proportion of farmers adopting different climate smart and sustainable practices 

Table 4 presents the level of adoption of different climate smart and sustainable coffee production 
practices, including cultural control of pests & diseases (C), enhancement of soil fertility & water 
retention (S) or intensification (I) (with 1 = adoption and 0 otherwise). In total, a farmer had eight 
possible combinations of climate smart and sustainable coffee production practices from which to 
choose. The data shows that generally adoption of the related practices is still very low in Uganda. 
More specifically, 36% of the coffee farmers did not adopt any of the recommended practices (C0 
S0 I0) and about 46% of the farmers reported to have adopted at least one of the recommended 
practices (C1 S0 I0, C0 S1 I0 and C0 S0 I1). Only 3% of the farmers adopted all the recommended 
practices (C1 S1 I1). 

[Table 4 near here]. 

4. Methods  

In practice, assessing the impact of technologies and agricultural innovations involve randomly 
allocating participants into treatment (those receiving the intervention) and control groups (those 
not assigned to any intervention), a process referred to as a randomized control trial (RCT). The 
RCT impact assessment design is sufficient enough to provide unbiased treatment effect estimates 
especially when subjects are randomized. However, for most farm technologies and innovations, 
farmers endogenously self-select, and their adoption decisions are often influenced by unobserved 
factors that are somehow correlated with outcome variables (Khonje et al., 2018). In such 
instances, selection bias emanating from both observed and unobserved heterogeneity needs to be 
controlled if consistent estimates are to be obtained (Teklewold et al., 2013 ). 

The propensity score matching (PSM) approach is one technique that has been widely used in 
impact evaluation literature to control for observable selection bias (Kassie et al., 2011; Linden, 
2017). It offers the advantage of reduced selection bias by balancing the observed distribution of 
covariates across the treated and control groups. Use of the PSM approach has even been made 
better through incorporation of weighting mechanisms, including an IPW estimator that models 
the probability of treatment without any assumptions about the functional forms of the outcome 
model (Huber et al., 2010). However, such estimators become extremely unstable as the overlap 
assumption gets close to being violated and sensitive to misspecification of the propensity score 
model (Kikulwe et al., 2019). Doubly robust estimators such as the augmented inverse-probability-
weighted (AIPW) estimator developed by Robins et al. (1994) are therefore used to improve the 
efficiency of IPW estimators. This is because AIPW has the potential to accommodate both the 
outcome regression model and the propensity score model to derive an estimator that remains 
consistent if either of the two models is correctly   specified (Tan, 2010). A main setback for the 
propensity score matching method and its related model extensions like the IPW and AIPW is that 
they are only valid if the unconfoundedness and overlap assumptions are satisfied (Linden et al., 
2015). Additionally, Abdulai (2016) and Jaleta et al. (2016) show that during simulation using 
these approaches, strong ignorability is assumed as a result, they cannot be used to correct selection 
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bias arising from unobserved factors. Multinomial endogenous switching regression (MESR) 
models have been proposed in literature to account for the unobservables. MESR is based on a 
selection correction method that generates an inverse Mills ratio using the theory of truncated 
normal distribution and latent factor structure, respectively, to correct for selection bias associated 
with both observed and unobservables (Bourguignon et al., 2007). Based on the strengths of the 
MESR model, this paper therefore employs the multinomial endogenous switching regression 
model to investigate the determinants of adoption and impact of climate smart and sustainable 
coffee production practices on coffee yields in Uganda. The multinomial endogenous switching 
regression approach is a two-stage impact assessment procedure. The first stage models 
determinants of farmers’ choice of climate smart coffee production practices using a multinomial 
logit model (MNL). The second stage models the impact of the chosen climate smart coffee 
production practices on the outcome under investigation (yield). 

When operationalizing the multinomial endogenous switching regression model (MESR), we 
follow the utility maximization framework to model coffee farmers’ decisions to adopt climate 
smart and sustainable coffee production practices. We defined non-adopter as those farmers who 
have only ventured in the normal/basic coffee management practices stipulated in step 1 (See table 
1). Farmers implementing any of the activities specified in steps 2, 3 and 4 (cultural pest and 
disease control, soil fertility and water retention and intensification practices, respectively) or a 
combination are referred to as adopters of the climate smart coffee production practices. Following 
Asfaw et al. (2012) and Ghimire et al. (2015), we assume that each farmer’s adoption decision is 
given by an underlying utility function, and the farmer makes a choice to adopt climate smart and 
sustainable coffee production practices based on maximization of expected utility. We further 
conceptualize that before adoption of sustainable coffee production practices in one or more steps, 
a household compares the net benefit of adopting or not adopting. The farmer only chooses to 
adopt a given set of practices in the next step if the net benefit/utility derived is greater than non-
adoption or staying at the current step. This study assessed adoption by the numbers of steps 
adopted at household levels. The dependent variables in this study were discrete in nature taking 
the values j = 1, 2, 3…….8. With 1 representing the non-adopters and 2 to 8 representing adopters 
of climate smart coffee production practices either singly or in combination. With the dependent 
variables presented as discrete choice options, a multinomial logit model was opted for to conduct 
analysis on the determinants of adoption at each step. The model was specified as 

𝑈𝑈𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖                                                                                                                                               (1) 

Where 𝑈𝑈𝑖𝑖𝑖𝑖 is the utility farmer i derives from making choice j, 𝑋𝑋𝑖𝑖 is a vector of explanatory 
variables that influence farmers’ utility, 𝛽𝛽𝑗𝑗  is a vector of parameters, and 𝜀𝜀𝑖𝑖𝑖𝑖  is the error term. A 
farmer’s choice of climate smart coffee production practice j with respect to any other alternatives 
is represented as follows: 
 
{1 𝑖𝑖𝑖𝑖 𝐼𝐼𝑗𝑗𝑗𝑗 >  𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘≠1 (𝐼𝐼𝑘𝑘𝑘𝑘) 𝑜𝑜𝑜𝑜 ɳ1𝑖𝑖 < 0 ∶   𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 ≠ 𝑗𝑗 𝐽𝐽 𝑖𝑖𝑖𝑖 𝐼𝐼𝑗𝑗𝑗𝑗 >  𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘≠𝑗𝑗  (𝐼𝐼𝑘𝑘𝑘𝑘) 𝑜𝑜𝑜𝑜 ɳ𝑗𝑗𝑗𝑗 < 0            (2) 
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Equation 2 above indicates that the 𝑖𝑖th farmer will adopt package j only if it offers greater benefit 
(benefit/returns) compared to any other package available for selection k ≠ j 
 
Within the multinomial model, assuming an independent and identically distributed error term the 
probability that an individual i will choose alternative j is thus specified as 
 

𝑃𝑃𝑃𝑃(𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝑗𝑗𝑋𝑋�
∑𝑛𝑛𝑗𝑗 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽𝑗𝑗𝑋𝑋�

                                                                                     (3)  

The impact of the climate smart coffee production practices on the target outcome (coffee yields) 
is estimated using the following regime equation  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1: 𝑅𝑅1𝑖𝑖 =  𝛿𝛿1𝑍𝑍1𝑖𝑖 +  𝑤𝑤1𝑖𝑖   𝑖𝑖𝑖𝑖 𝑖𝑖 = 1                                                                                                             (4) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐽𝐽: 𝑅𝑅𝑗𝑗𝑗𝑗 =  𝛿𝛿𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 +  𝑤𝑤𝑗𝑗𝑗𝑗   𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗,       𝑗𝑗 = 2, 3, … ,8                                                                                 (5) 

Where R is the coffee farmers’ yield in regime j, Z is a set of household characteristics and other 
explanatory variables including access to credit, access to input dealers, distance to markets among 
others and w is the error term. The fact that there are higher chances of having unobserved 
correlation between first and second stage regression, means that w and 𝜀𝜀 are not independent. In 
this case, 𝛿𝛿 should therefore be estimated by including additional selection correction terms of 
alternative choices λ (Bourguignon et al., 2007). This equation can be written as follows 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1: 𝑅𝑅1𝑖𝑖 =  𝛿𝛿1𝑍𝑍1𝑖𝑖 +  𝜎𝜎1𝜆𝜆1𝑖𝑖 +  𝑤𝑤1𝑖𝑖   𝑖𝑖𝑖𝑖 𝑖𝑖 = 1                                                                                               (6) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐽𝐽: 𝑅𝑅𝑗𝑗𝑗𝑗 =  𝛿𝛿𝑗𝑗𝑍𝑍𝑗𝑗𝑗𝑗 + 𝜎𝜎𝑗𝑗𝜆𝜆𝑗𝑗𝑗𝑗 +  𝑤𝑤𝑗𝑗𝑗𝑗   𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗,       𝑗𝑗 = 2, 3, … ,8                                                                      (7) 

Where λ is the inverse mills ratio predicted and computed from the probability estimates in 
equation (2), w is the error term with an expected value of 0, and 𝜎𝜎 is the covariance between 𝑢𝑢 
and 𝜀𝜀. The estimates from equations 6 and 7 yield the counterfactual and treatment effects that are 
then used to compute the impact of climate smart coffee production practices on the target 
outcome, which is the coffee yield. The average treatment effects on the treated (ATT) are then 
computed following Kassie et al. (2015) and Khanal et al. (2020) as expressed below.  

Coffee farmers who participated in j climate smart and sustainable coffee production practice 
(actual) 

𝐸𝐸�𝑅𝑅𝑗𝑗𝑗𝑗|𝐼𝐼 = 𝐽𝐽,   𝑍𝑍𝑗𝑗𝑗𝑗 , 𝜆𝜆𝑗𝑗𝑗𝑗� =  𝛿𝛿𝑖𝑖𝑍𝑍𝑗𝑗𝑖𝑖 +  𝜎𝜎𝑗𝑗𝑗𝑗𝜆𝜆𝑗𝑗𝑗𝑗                                                                                                              (8) 

Coffee farmers who did not participate in j climate smart and sustainable coffee production practice 
(actual) 

𝐸𝐸[𝑅𝑅1𝑖𝑖|𝐼𝐼 = 1,   𝑍𝑍1𝑖𝑖 , 𝜆𝜆1𝑖𝑖] =  𝛿𝛿1𝑍𝑍1𝑖𝑖 +  𝜎𝜎1𝜀𝜀𝜆𝜆1𝑖𝑖                                                                                                               (9)  

Coffee farmers who participated in j climate smart and sustainable coffee production practice had 
they decided not to participate in any climate smart and sustainable coffee production practice 
(counterfactual) 

𝐸𝐸�𝑅𝑅1𝑖𝑖|𝐼𝐼 = 𝐽𝐽,   𝑍𝑍𝑗𝑗𝑗𝑗 , 𝜆𝜆𝑗𝑗𝑗𝑗� =  𝛿𝛿1𝑍𝑍𝑗𝑗𝑗𝑗 +  𝜎𝜎1𝜀𝜀𝜆𝜆𝑗𝑗𝑗𝑗                                                                                                               (10) 
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Coffee farmers who did not participate in j climate smart and sustainable coffee production practice 
had they decided to participate (counterfactual) 

𝐸𝐸�𝑅𝑅𝑗𝑗𝑗𝑗|𝐼𝐼 = 1,   𝑍𝑍1𝑖𝑖 , 𝜆𝜆1𝑖𝑖� =  𝛿𝛿1𝑍𝑍1𝑖𝑖 +  𝜎𝜎𝑗𝑗𝑗𝑗𝜆𝜆1𝑖𝑖                                                                                                          (11) 

The average effect of involvement in any of the climate smart and sustainable coffee production 
practices on coffee productivity (yields) of the farmers (ATT) is then computed as the difference 
between equation (8) and equation (10) which can be written as:  

𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐸𝐸�𝑅𝑅𝑗𝑗𝑗𝑗|𝐼𝐼 = 𝐽𝐽,   𝑍𝑍𝑗𝑗𝑗𝑗 , 𝜆𝜆𝑗𝑗𝑗𝑗� −  𝐸𝐸�𝑅𝑅1𝑖𝑖|𝐼𝐼 = 𝐽𝐽,   𝑍𝑍𝑗𝑗𝑗𝑗 , 𝜆𝜆𝑗𝑗𝑗𝑗� =  𝑍𝑍𝑗𝑗𝑗𝑗�𝛿𝛿𝑗𝑗 −  𝛿𝛿1� +  𝜆𝜆𝑗𝑗𝑗𝑗�𝜎𝜎𝑗𝑗 − 𝜎𝜎1�                   (12) 

 

5. Results and Discussion  

5.1. Determinants of adoption of climate smart and sustainable coffee management practices. 

Table 5 presents results from the multinomial logit model. The base category is non-adoption (C0 
S0 I0) to which results are compared. The results show that the estimated coefficients differ 
substantially across the alternative packages. Age of the household head was found to have a 
negative impact on the adoption of a combination of cultural control of pests & diseases, and 
enhancement of soil fertility & water retention (C1 S1 I0), and the combination of all recommended 
practices (C1 S1 I1). This could be attributed to the fact that implementation of some of these 
practices requires physical strength which reduces with age. This contradicts findings by 
Ntshangase et al. (2017) and Massresha et al. (2021) who found a positive relationship between 
age and adoption of agricultural technologies. Additionally, there is a strong correlation between 
the occupation of household head and adoption of intensification practices only (C0 S0 I1) whereby 
agriculture as the main occupation increases the probability of venturing into intensification 
practices only. This is possible because such households solely rely on agriculture for income and 
food security and thus are pushed to adopt agricultural intensification to maintain higher levels of 
production. Additionally, access to agricultural loans was found to increase the likelihood of 
adoption of C1 S0 I1 practices. This could be attributed to the high investment costs associated with 
intensification, which is part of the practices in the combination, thus necessitating external 
financing through borrowing. This finding supports that of Abdallai (2016) who noted that access 
to credit positively influenced adoption of conservation agriculture technologies and Nakano and 
Magezi (2020) who found a positive relationship between credit access and fertilizer use among 
households with no access to irrigation water facilities.  The results further reveal that 
intensification practices are strongly correlated with access to agricultural input dealers/stores. 
Access input dealers increased the likelihood of adopting either a combination of intensification 
practices and soil fertility enhancement & water retention (C0 S1 I1) practices or adoption of all 
recommended practices (C1 S1 I1). This supports earlier research that revealed that input dealers 
offer farmers with detailed information about different inputs which positively impacts adoption 
(Dar et al., 2020). Adoption of C1 S1 I1 practices was also more common among households that 
had accessed agricultural production information, though it reduced the likelihood of venturing in 
C1 S0 I0 practices only. Studies show that access to production information enables farmers to make 
more informed decisions thus increasing the possibilities of adopting more innovations while 
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cultural control practices are generally known considering that they have been in place for a 
prolonged period of time (Walgenbach, 2018; Freeman and Qin, 2020).   

Membership to farmer groups also increased the likelihood of adopting C1 S0 I0 and C1 S0 I1 

practices. This could possibly be attributed to increased knowledge sharing among group members 
(Awotide et al., 2016). Furthermore, occurrence of drought increased the likelihood of adopting 
the C0 S1 I0 practices, but reduced the likelihood of adopting all the recommended practices (C1 S1 
I1). Occurrence of prolonged droughts can potentially lead to drying and ultimately death of the 
coffee plant, creating a greater need for soil and water conservation in place of adopting all 
recommended practices which are unaffordable to most smallholder farmers (Namenya et al., 
2014;). On the other hand, more educated farmers are more likely to adopt all recommended 
practices (C1 S1 I1), but are less likely to adopt C1 S0 I0 practices only. Higher education level 
possibly enables a farmer to internalize agricultural information faster (Kasirye, 2013; Awotide et 
al., 2016) 

Households in the central region are also more likely to adopt C1 S0 I1 practices, but less likely to 
adopt C1 S0 I0, C0 S1 I0 and C0 S0 I1 practices only. Households in the western region were more 
likely to adopt C0 S0 I1, C1 S1 I0 and C1 S0 I1 practices but reduced the likelihood of adopting C1 S0 
I0 and C0 S1 I0 practices only. This could be attributed to coffee being the major cash crop in the 
central region, yet the region has become drier overtime unlike in western region where bananas 
are the major cash crop (Lindrio, 2021; UCDA, 2021).  Finally, the occurrence of heavy rains 
reduced the likelihood of adopting C1 S0 I0 practices, but increased the likelihood of adopting C0 
S0 I1 and C1 S1 I1 practices. 

[Table 5 near here]



 

5.2. Average treatment effects of vertical coordination mechanisms on farm performance 
outcomes 

Table 6 below presents estimates of the average treatment effect on the treated (ATT) of climate 
smart and sustainable coffee production practices on coffee productivity (yield) generated using a 
multinomial endogenous switching regression model. The variables accessed agricultural loans 
and traditional coffee were used as instruments for adoption (Major_dependent) in the model. A 
test of endogeneity was conducted on the adoption variable (Major_dependent) and a significant 
result was obtained (F (1, 1216) = 6.7178, p = .009) thus satisfying the endogeneity assumption 
for the regression model. Instrument validity, specifically tests for instrument strength and over 
identification, was further conducted. Results from the tests revealed that the associated F-statistic 
for the instruments in the first-stage regression was 43.00 which is higher than the strictest critical 
value of 16.38 reflected by Stock and Yogo (2005), thus indicating that the instruments are relevant 
and not weak. The Sargan and Basmann test for overidentifying restrictions was also fulfilled, 
yielding chi2(1) = 0.003746 (p = 0.95) and chi2(1) = 0.003701 (p = 0.95), respectively.     

Overall, the results of the ATT show that relative to the non-adopters, if adopted singly, 
participation in cultural pest and disease control in coffee production (C1 S0 I0) results in the highest 
productivity (yield) increase for the farmer (110% yield increase). This is closely followed by soil 
fertility and water retention (C0 S1 I0) at 56% yield increase and lastly intensification practices (C0 
S0 I1) at 52%. When adoption of the practices is carried out in combination, relative to the non-
adopters, all possible combinations with cultural pest and disease control inclusive resulted in a 
higher percentage yield increase compared to combinations without it. 

[Table 6 near here]. 

 

6.0 Conclusion and policy recommendation 

6.1 Conclusion   

Climate smart practices have been promoted to enhance sustainable coffee production in Uganda 
amidst an environment faced with increasing adverse effects of climate change. There is limited 
information on adoption of single or multiple combination sets of these climate smart practices 
and their impacts on coffee productivity. The results of this study suggest that older farmers are 
less likely to adopt climate smart practices. In particular, regression results revealed that as farmers 
get older, their likelihood of adopting a combination of cultural control of pests & diseases and 
soil fertility & water retention (C1 S1 I0) and the combination of all recommended practices (C1 S1 

I1) significantly reduced. The results further revealed that access to agricultural loans, information 
and input dealers increased the likelihood of adopting climate smart coffee production practices. 
Similarly, membership to farmer groups increased the probability of adopting C1 S0 I0 and C1 S0 I1 

practices. On the other hand, highly educated farmers were more likely to adopt all the 
recommended climate smart practices. Regarding yields, the results revealed that more yields were 
obtained if the practices were adopted as a combination with cultural pest and disease control as 
one of the practices in that given combination. 
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6.2 Recommendations 

From the results of this study, it is evident that credit access plays a key role in the adoption of climate 
smart coffee production practices but only a small proportion of farmers reported to have received a line of 
credit. There is a need to develop policies that will make loans from financial institutions more affordable 
and accessible to small scale farmers. Governments should promote adoption of climate smart coffee 
production practices by reducing financial resource constraints such as taxes on irrigation equipment or 
procure needed equipment at sub-county level so that farmers can borrow and use it at a subsidized cost. 
The results further revealed that farmer group membership increased adoption of climate smart practices. 
Government through its programs such as operation wealth creation needs to empower farmers to form 
cooperatives to increase information flow and also make credit access easier to group members. To 
encourage mass uptake of the practices, there is need to introduce a certification plan for all coffee that is 
produced following the sustainable practices and offer price premium for such coffee to motivate farmers’ 
participation. Finally, climate smart practices should be promoted as combinations having cultural pest and 
disease control as one of the practices if higher returns to coffee productivity are to be achieved. 
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Table 1: Intensification steps and sustainable coffee production practices under each step  
 Step 1 Step 2 Step 3 Step 4 
Practices Basic 

management 
practices  
(Pruning, Weeding, 
use traditional 
seeds, and 
intercropping)  

Cultural control 
of pests & diseases  
(Spraying, 
(Improved and 
tolerant seedlings) 
 

Enhancement of soil fertility 
& water retention 
(Mulching, organic fertilizer, 
afforestation, zero or no 
tillage and manure application 

Intensification  
(Pesticides, in-
organic fertilizers, 
and irrigation) 
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Table 2. Summary of variables used for econometric modelling and analysis.  
No Data needed for the analysis Sub-section under which they fall in 

the AAS questionnaire  
1 Demographic variables Household roaster (section 5.2) 
2 Participation in agroforestry  Enterprise roaster (section 4.3)   
3 Land ownership type and acreage owned  Parcel roaster (4.4) 
4 Land preparation mechanism (tillage type)  Plot roaster (section 4.5)  
5 Area under coffee production  Plot roaster (section 4.5)  
6 Crop type coffee Crop roaster (section 4.6)  
7 Seed type used (local, improved) Crop roaster (section 4.6) 
8 Coffee yields and revenue (Income from 

coffee)  
Crop production and disposition (section 
5.3) 

9 Inputs used for coffee production 
(Fertilizer, pesticides, herbicides etc) 

Agricultural inputs (Section 5.4) 

10 Coffee management/ agricultural activities 
undertaken (Mulching, spraying, pruning, 
weeding, irrigation)  

Agricultural activities and costs (section 
5.5) 

11 Access to agricultural information 
(weather, markets, crop varieties etc) 

Sources of agricultural information 
(section 5.10) 

12 Access and proximity to key facilities  Access to facilities (Section 5.11) 
13 Ownership of storage facilities  Storage facilities (section 5.13) 
14 Credit access  Access to credit (section 5.14) 
15 Exposure to agricultural shocks  Shocks and food security (section 5.16) 
16 Access to extension  Extension services (section 5.17) 
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Table 3. Summary statistics of variables used in analysis 

 
 

All 
Sample 

Mean values for climate smart and sustainable practices F/Chi2 
Value C0 S0 I0 C1 S0 I0 C0 S1 I0 C0 S0 I1 C1 S1 I0 C1 S0 I1 C0 S1 I1 C1 S1 I1 

Age of household head (years) 48.98 
(12.47) 

49.87 
(12.72) 

48.92 
(12.73) 

49.27 
(12 .37) 

44.12 
(12.77) 

48.99 
(11.60) 

47.67 
(11.64) 

43.50 
(11.71) 

49.42 
(11.12) 

2.84*** 

Male-headed household (%) 78.64 77.43 76.85    79.09 97.50 77.06 76.19 87.50 65.79 15.69** 
Married household head (%) 76.69 75.40 75.00 77.40 97.50 75.23 71.43 78.57 71.05 11.63 
Agriculture as the main 
occupation (%) 

80.58 81.26 81.48 79.09 87.50 84.40 80.95 76.79 73.68 4.70 

Accessed agricultural loan (%) 12.43 8.80 8.33 12.98 17.50 23.85 23.81 12.50 15.79 | 24.03*** 
Has access to agricultural input 
dealers/store (%) 

52.32 45.37 54.63 50.48 65.00 57.80 85.71 69.64 73.68 36.33*** 

Accessed production information 
(%) 

18.44 13.54 12.04 18.75 25.00 24.77 23.81 35.71 36.84 34.15*** 

Cultivated land (Hectares) 0.23 
(0.31) 

0.19 
(0.29) 

0.20 
(0.27) 

0.21 
(0.26) 

0.26 
(0.23) 

0.34 
(0.42) 

0.42 
(0.35) 

0.31 
(0.35) 

0.46 
(0.56 

19.00*** 

Member of Farmer group (%) 14.70 11.74 9.26 15.38 12.50 22.02 19.05 16.07 34.21 22.55*** 
Was affected by hailstorms 7.07 7.00 1.85 7.69 17.50 7.34 9.52 5.36 5.26 11.99 
Household size 6.45 

(2.70) 
6.26 
(2.74) 

6.15 
(2.57) 

6.49 
(2.58) 

6.66 
(2.70) 

6.99 
(2.88) 

6.38 
(3.23) 

6.80 
(2.64) 

6.84 
(3.33) 

1.38 

Education level of household head % 
Had nursery or no education 13.57 16.48   14.81 13.70 5.00 11.93 9.52 3.57 5.26 29.84* 
Attained primary level education 59.95 60.27 51.85 61.06 65.00 62.39 52.38 55.36 65.79 
Attained secondary level 
education 

23.48 20.77 29.63 22.84 22.50 21.10 38.10 37.50 23.68 

Education level above secondary 3.01 2.48 3.70 2.40 7.50 4.59 0.00 3.57 5.26 
Region %  
Central 33.39 25.28 33.33 29.81 37.50 55.96 66.67 35.71 76.32  

144.53**
* 

Eastern 21.77 30.70 21.30 15.63 37.50   5.50 9.52 30.36 10.53 

Western 43.87 41.53 45.37 54.33 25.00 38.53 23.81 33.93 13.16  
Northern  0.97 2.48 0.00 0.24 0.00 0.00 0.00 0.00 0.00  
           
Yields (tons/hectare) 0.86 

(1.08) 
0.66 
(0.70) 

0.67 
(0.70) 

1.02 
(1.30) 

1.02 
(1.03) 

0.78 
(1.11) 

0.70 
(0.76) 

1.45 
(1.64) 

1.25 
(1.38) 

7.59*** 

Number of observations                       1231 
Note: values in parentheses are standard errors. ***, **, & * represent statistical significance at 1%, 5%, and10%, respectively 
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Table 4. Climate smart and sustainable coffee production practice combinations adopted by farmers 

Choice 
(j) 

Binary 
triplet 
(package) 

 Cultural control of 
pests & diseases  

(C) 

 Enhancement of soil 
fertility & water 

retention (S) 

 Intensification  
 

           (I) 

 Frequenc
y  

% 

C1 C0 S1 S0 I1 I0 
1 C0 S0 I0   X   X   X  443  36 
2 C1 S0 I0 X   X  X 108  9 
3 C0 S1 I0  X X   X 416  34 
4 C0 S0 I1  X  X X  40  3 
5 C1 S1 I0 X  X   X 109 9 
6 C1 S0 I1 X   X X  21  2 
7 C0 S1 I1  X X  X  56  4 
8 C1 S1 I1 X  X  X  38  3 

Note: The binary triplet represents the possible climate smart and sustainable coffee production practice combinations. Each 
element in the triplet is a binary variable for a climate smart and sustainable practice.  
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Table 5. Marginal effects for determinants of Adoption of climate smart and sustainable practices 

Variable  C1 S0 I0 C0 S1 I0 C0 S0 I1 C1 S1 I0 C1 S0 I1 C0 S1 I1 C1 S1 I1 

Age of household head (years) 0.001 
(0.001) 

0.000 
(0.000) 

0.001 
(0.001) 

-0.001** 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.000) 

-0.002*** 
(0.001) 

Accessed agricultural loans (%) -0.05 
(0.04) 

0.03 
(0.02) 

0.02 
(0.04) 

-0.02 
(0.02) 

0.04** 
(0.02) 

0.01 
(0.01) 

-0.01 
(0.02) 

Agriculture as main occupation (%) 0.01 
(0.03) 

-0.02 
(0.02) 

-0.02 
(0.03) 

0.01 
(0.01) 

0.02 
(0.02) 

-0.001 
(0.009) 

0.000 
(0.01) 

Was affected by drought (%) -0.002 
(0.03) 

0.02* 
(0.01) 

0.03 
(0.03) 

0.01 
(0.01) 

-0.02 
(0.01) 

0.005 
(0.008) 

-0.03** 
(0.02) 

Has access to agricultural input 
dealers/store (%) 

-0.04 
(0.03) 

-0.004 
(0.01) 

-0.01 
(0.03) 

0.01 
(0.01) 

-0.01 
(0.01) 

0.02** 
(0.01) 

0.02* 
(0.01) 

Accessed production information (%) -0.08** 
(0.03) 

-0.02 
(0.02) 

0.02 
(0.03) 

0.01 
(0.01) 

0.02 
(0.02) 

0.001 
(0.009) 

0.03** 
(0.01) 

Cultivated land (Hectares) -0.08 
(0.05) 

-0.05** 
(0.02) 

0.01 
(0.05) 

0.02 
(0.02) 

0.03 
(0.02) 

0.01* 
(0.01) 

0.04** 
(0.02) 

Member of Farmer group (%) -0.07* 
(0.04) 

-0.02 
(0.02) 

0.03 
(0.04) 

-0.01 
(0.02) 

0.03* 
(0.02) 

0.004 
(0.009) 

0.002 
(0.02) 

Was affected by heavy rains (%) -0.25*** 
(0.05) 

-0.04 
(0.03) 

0.17*** 
(0.05) 

0.02 
(0.01) 

0.04 
(0.03) 

0.01 
(0.01) 

0.04** 
(0.02) 

Household size -0.003 
(0.005) 

-0.003 
(0.002) 

-0.001 
(0.005) 

0.000 
(0.001) 

-0.01** 
(0.003) 

-0.001 
(0.001) 

0.001 
(0.002) 

Education level of household head  -0.04* 
(0.02) 

0.01 
(0.01) 

0.003 
(0.02) 

0.01 
(0.01) 

-0.004 
(0.01) 

0.003 
(0.006) 

0.02* 
(0.01) 

Planted traditional coffee (%) -2.04 
(96.30) 

0.16 
(2.01) 

2.19 
(126.34) 

0.21 
(57.74) 

-0.21 
(4.84) 

-0.06 
(1.81) 

0.26 
(60.24) 

Central -0.18*** 
(0.03) 

-0.08*** 
(0.02) 

0.16*** 
(0.04) 

-0.01 
(0.01) 

0.07*** 
(0.03) 

0.009 
(0.01) 

-0.01 
(0.01) 

Western -0.16*** 
(0.03) 

-0.03* 
(0.02) 

0.22*** 
(0.03) 

-0.03** 
(0.01) 

0.05** 
(0.03) 

0.0001 
(0.01) 

-0.02 
(0.01) 

 

 
 
 
 



 

Table 6. Average treatment effect of Climate smart and sustainable coffee production 
practices on coffee productivity (Yield) 

Technology 
combination 

Actual 
outcome 

Counterfact
ual outcome  

ATT t-value % Change 
in yield 

C1 S0 I0 0.67(0.03) 0.32(0.12) 0.35 2.77*** 109.68 

C0 S1 I0 1.02(0.02) 0.65(0.01) 0.36 13.69*** 55.81 

C0 S0 I1 1.02(0.11) 0.67(0.04) 0.35 2.88*** 51.62 

C1 S1 I0 0.78(0.04) -0.59(0.11) 1.37 11.48*** -231.57 

C1 S0 I1 0.70(0.17) -0.72(0.33) 1.42 3.89*** -197.41 

C0 S1 I1 1.45(0.18) 0.69(0.04) 0.76 4.20*** 109.42 

C1 S1 I1 -0.18(0.18) -0.18(0.18) 0.00 0.00 0.00  

 

 

 

 


