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Abstract 

  

Agricultural productivity is hindered in smallholder farming systems due to several factors, 

including farmers’ inability to meet crop-specific soil requirements. This paper focuses on soil 

suitability for maize production and creates multidimensional soil suitability profiles of 

smallholder maize plots in Uganda, while quantifying forgone production due to cultivation on 

less-than-suitable land and identifying groups of farmers that are disproportionately impacted. The 

analysis leverages the unique socioeconomic data from a subnational survey conducted in Eastern 

Uganda, inclusive of plot-level, objective measures of maize yields and soil attributes. Stochastic 

frontier models of maize yields are estimated within each soil suitability class to understand 

differences in returns to inputs, technical efficiency, and potential yield. Only 13 percent of farmers 

are cultivating soil that is highly suitable for maize production, while the vast majority are 

cultivating only moderately suitable plots. Farmers cultivating highly suitable soil have the 

potential to increase their observed yields by as much as 86 percent, while those at the opposite 

end of the suitability distribution (with marginally suitable land) operate closer to the production 

frontier and can only increase yields by up to 59 percent, given the current technology set. There 

is heterogeneity in potential gains across the wealth distribution, with poorer households facing 

more heavily constrained potential. Assuming no change in technologies and management 

practices used by Ugandan farmers, there are limited economic gains tied to closing suitability 

class-specific productivity gaps, or even at the extreme reaching the average potential productivity 

levels observed in the high suitability class. 
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1. Introduction 

 

Agriculture is central to rural livelihoods in Sub-Saharan Africa, where smallholder family farming 

contributes up to 69 percent of rural household incomes (Davis et al., 2017), with direct effects on 

household consumption and nutrition outcomes (Azzarri et al. 2015; Dillon et al., 2017; Kirk et 

al., 2018; Slavchevska et al., 2015). In view of the importance of agriculture for farming 

households and the evidence regarding the disproportionate reduction in poverty associated with 

growth in the agricultural sector vis-à-vis other sectors, increasing agricultural productivity has 

been a long-standing goal of African governments. Nevertheless, the observed yields for staple 

crops, such as cereals, remain significantly lower than potential yields, especially in rain-fed areas 

(Lobell et al., 2009). Research has also asserted that (i) the large dispersion in agricultural 

productivity among African smallholders is driven in part by unobserved heterogeneity in land 

quality (Gollin and Udry, 2021), and (ii) poor crop yields in the region are driven in part by 

depletion of soil nutrients, which, besides its direct impact on crop yields, also adversely affects 

the effectiveness of non-land inputs (Berazneva et al., 2018). 

 

The micro-level relationships between crop yields and a range of both climatic and non-climatic 

factors have been studied extensively in African smallholder farming systems, utilizing 

socioeconomic and agricultural survey data which, if georeferenced, have also been integrated 

with third-party geospatial data sources.2 Despite the rich evidence base on the drivers 

of/constraints to crop yields, the research on the impact of soil fertility on farm- and plot-level 

agricultural productivity outcomes, including crop yields, has, however, been relatively limited.  

 

The knowledge gaps have been mainly due to (i) systematic measurement errors in farmers’ 

subjective soil quality assessments (Berazneva et al., 2018; Carletto et al., 2017); (ii) lack of 

integration of objective sampling and testing of soils as part of household and farm surveys that 

are critical for understanding the drivers of agricultural production and productivity at the micro-

level (Gourlay et al., 2017); and (iii) the mismatch between the scale of African smallholder 

farming and the spatial resolution of publicly-available, continent-wide geospatial data on soil 

properties - most notably generated with 250-meter spatial resolution as part of the Africa Soil 

Information Service (AFSIS) initiative (Hengl et al., 2015).  

 

A related strand of research includes the geospatial assessments of the suitability of growing 

conditions for specific crops and these assessments have been made available also at the level of 

relatively aggregated geographic areas, leveraging primarily geospatial data that may or may not 

be complemented with ground data on soil properties (Abd-Elmabod et al., 2019; Ahamed et al., 

 
2 See for instance the research on low levels of agricultural input use (Sheahan and Barrett, 2017), intra- and inter-

household gender differences in levels of and returns to agricultural inputs (Udry, 1996; Kilic et al., 2015; Aguilar et 

al. 2015; Oseni et al. 2015; Slavchevska, 2015), imperfections in land and labor markets (Palacios-Lopez and Lopez, 

2015; Deininger et al., 2017; Dillon and Barrett, 2017), and impacts of extreme weather events on agriculture 

(McCarthy et al., 2021; Michler et al., 2019; Wineman et al., 2017). 
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2000; Hall et al., 1992). A prominent example of these efforts is the Global Agro-Ecological Zones 

(GAEZ) initiative, which makes available global geospatial datasets on crop suitability and 

attainable yield for 53 crops but at approximately 9-kilometer spatial resolution.3 While the GAEZ 

data may be useful for assessing crop suitability across expansive geographies, the coarse 

resolution of this geospatial product limits its use for farm- or plot-level analyses of agricultural 

productivity in Sub-Saharan African contexts. 

 

Against this background, our paper leverages unique household survey data collected in Uganda, 

inclusive of plot-level, objective measures of maize yields and soil attributes, to fill knowledge 

gaps regarding the linkages between soil fertility and smallholder agricultural productivity – both 

on the whole and within different farmer subpopulations that are defined by socioeconomic 

characteristics. In doing so, we additionally provide operational insights regarding the integration 

of objective soil testing into large-scale household surveys, and present empirical evidence 

regarding the shortcomings of existing geospatial data on soil attributes vis-à-vis plot-level soil 

sampling and analysis. The data originate from a methodological survey experiment conducted in 

Eastern Uganda; the top maize-producing region in Uganda where maize is a primary staple crop. 

 

Specifically, our analysis (i) estimates the maize-specific soil suitability profile of each maize plot 

based plot-level measures of soil attributes and assigns each plot to one of four suitability classes 

that are anchored in the GAEZ definitions, (ii) demonstrates the heterogeneity, across the soil 

suitability classes, in observed versus potential levels of productivity – through the estimation of 

stochastic frontier functions of crop cutting-based maize yields; (iii) quantifies production and 

income gains from closing suitability class-specific productivity gaps – for the sample as a whole 

and for various farmer sub-populations; and (iv) documents whether the use of 250-meter 

resolution AFSIS geospatial data on soil attributes changes our conclusions regarding the 

relationships between soil fertility and maize yields.  

 

Measuring agricultural productivity on plots of varying levels of maize-specific soil suitability, 

and the potential gains in productivity on those plots, allows for a more thorough understanding 

of the ability of agriculture alone to generate significant income gains. And while some existing 

work integrates ground-based measures of realized crop production, the current literature fails to 

adequately address the linkages between soil suitability, observed versus potential crop yields, and 

other household- and community-level factors influencing productivity outcomes.4 

 

The results indicate that despite the standing of the Eastern Region as Uganda’s leading maize 

producing region, only 13 percent of farmers are cultivating soil that is highly suitable for maize 

production, while the vast majority are cultivating only moderately suitable lands. The key soil 

 
3 For more information, please visit: https://gaez.fao.org/pages/theme-details-theme-4.  
4 One notable exception is the work of Jain et al. (2020) who employ a holistic model of soil suitability in India, 

including socio-economic factors. 

https://gaez.fao.org/pages/theme-details-theme-4
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health deficiencies differ across suitability classes, suggesting that soil-based interventions need 

to be carefully considered for the specific suitability profiles in which they take place. The 

relationship between soil suitability, observed yields, and yield potential, is positive and 

significant. The findings suggest that farmers cultivating highly suitable land have the potential to 

increase their observed yields by as much as 86 percent, up to 3,009 kg/ha, while those at the 

opposite tail of the suitability distribution, those with marginally suitable land, operate closer to 

the efficient frontier and thus can only seek to increase observed yields by up to 59 percent, or 

1,315 kg/ha.  

 

Furthermore, the analysis reveals heterogeneity in potential gains across the wealth distribution, 

with poorer households facing more heavily constrained potential. The stochastic frontier 

estimations are sensitive to the use of geospatial AFSIS soil data vis-à-vis the plot-level soil 

measurements, and this is in part driven by the AFSIS data failing to distinguish between soil 

suitability classes to the same degree as, and in a consistent manner with, the plot-level soil data, 

with 19 percent of plots assigned a different suitability class when using the AFSIS data vis-à-vis 

the plot-level data. On the whole, assuming no change in technologies and management practices 

used by Ugandan farmers, there are limited economic gains tied to closing suitability class-specific 

productivity gaps, or even at the extreme reaching the average potential productivity levels 

observed in the high suitability class. 

 

The paper is organized as follows: Section 2 describes the context of Ugandan smallholder 

farming, Section 3 describes the data, Section 4 presents the empirical methodology, Section 5 

discusses the key results, and Section 6 concludes. 

 

2. Country Context  

 

Uganda has a population of 45.7 million, 73 percent of whom reside in rural areas.5 The share of 

rural population falling below the national poverty line stands at 23.4 percent – twice the level 

observed in urban areas (UBOS, 2021). In rural areas, 78 percent of the working population is 

employed in agriculture (UBOS, 2021), and agricultural income makes up 67 percent of total rural 

household income (Davis et al., 2017). As such, the Government of Uganda has long recognized 

the role of increased agricultural productivity as an important driver in generating wealth and 

alleviating poverty (GoU, 2013; 2015; MAAIF, 2013).  

 

In Eastern Uganda, the primary maize-growing region in the country and the region of analysis 

here, maize accounts for the highest share of crop income (World Bank, 2016), and no more than 

40 percent of maize-growing households sell any maize.6 Eastern Uganda, following Northern 

 
5 The statistics pertain to 2020 and are sourced from the World Bank World Development Indicators database: 

https://databank.worldbank.org/source/world-development-indicators.   
6 Authors’ calculation based on Uganda National Panel Survey (UNPS) 2015/16 data.  

https://databank.worldbank.org/source/world-development-indicators
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Uganda, is also the region with the highest concentration of the country’s poor, with a poverty rate 

of 26 percent (UBOS, 2021). In the analysis sample, as discussed in the subsequent section, nearly 

52 percent of all parcels of land owned or cultivated by the household were inherited or allocated 

by family or local leaders, suggesting that there is limited mobility of land across households.  

 

3. Data 

 

The majority of the analysis that follows relies on household survey data collected through the 

Methodological Experiment on Measuring Maize Productivity, Soil Fertility, and Variety 

(MAPS), and the related plot-level soil sample testing results. These plot-level soil analyses are 

complemented by, and compared to, geospatial soil data extrapolated from the Africa Soil 

Information Service (AFSIS). 

 

3.1.MAPS 

 

The Methodological Experiment on Measuring Maize Productivity, Soil Fertility, and Variety 

(MAPS) is a two-round household panel survey aimed at testing alternative methods of measuring 

maize production and key agricultural inputs, including soil fertility, maize variety, and plot area.7 

The resulting MAPS dataset includes a unique collection of objectively measured variables paired 

with data on household socioeconomics, demographics, and agricultural practices. MAPS Round 

I was fielded in 2015, and Round II was implemented in 2016. As the second round of the study 

did not include soil analysis, in this paper we utilize only MAPS Round I, which collected detailed 

data on the first (and the main) agricultural season of the calendar year. 

 

In order to ensure high quality data collection and supervision, the MAPS sampling design was 

limited in its geographic scope. The sampling for MAPS Round I was completed in a multi-stage 

process. First, three strata were identified in the primary maize-growing regions of Eastern 

Uganda, namely Serere district, Sironko district, and a 400km2 area spanning Iganga and Mayuge 

districts. From each stratum, enumeration areas (EAs) were randomly selected with probability 

proportional to size (15 from Serere and Sironko each, and 45 from the Iganga/Mayuge stratum). 

In each selected enumeration area, a full household listing was conducted as part of the study, 

identifying households who cultivated at least one maize plot and whether they had pure stand 

and/or intercropped plots. Finally, 12 households were selected from each enumeration area and 

with an effort to have an even split of purestand versus intercropping maize households. Due to 

the low incidence of pure stand maize plots, and cases in which plots identified as pure stand in 

 
7 MAPS was implemented through a collaboration between the World Bank’s Living Standards Measurement Study 

(LSMS), the Uganda Bureau of Statistics, the World Agroforestry Centre, the CGIAR Standing Panel on Impact 

Assessment (SPIA), and Stanford University, with generous support from the UK government. It is part of a larger 

methodological research agenda undertaken by the World Bank’s LSMS, aimed at identifying improved methods of 

agricultural and household data collection using more objective, yet scalable, methods.  
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the household listing phase were intercropped at the time of the first interview, the final sample 

was made of up 385 pure stand maize plots and 515 intercropped maize plots (43 percent and 57 

percent, respectively). Therefore, the sample comprises 900 maize plots, each one from a different 

household. 

 

The MAPS fieldwork was implemented by the Uganda Bureau of Statistics, with technical and 

training support from the World Bank Living Standards Measurement Study (LSMS). Each 

household was visited three times for a post-planting interview, a crop cutting visit, and a post-

harvest interview. The post-planting visit involved the administration of a questionnaire and the 

GPS-based plot area measurements, the demarcation of crop-cutting subplots, and the collection 

of soil samples (discussed below) on the randomly selected maize plot. The post-planting 

questionnaire included a standard individual-level module on household composition and basic 

characteristics (age, gender, education, etc.), a durable assets module, a farming assets module, 

questions on the use and availability of agricultural extension services, and finally parcel and plot-

level details.8 The plot-level modules made up the bulk of the post-planting questionnaire, with 

questions on tenure status, cultivation status, which household members manage the plot, what 

farm implements were used, what farm management practices were employed (for example, 

tillage, crop rotation, etc.), post-planting labor inputs, and most importantly, farmer assessment of 

plot area, soil quality, and seed usage. It is critical to note that farmer assessment was made prior 

to any objective measurement so as to not influence the farmer response.9 

 

In the second visit, the crop-cutting visit, enumerators harvested the demarcated subplots which 

were set during the post-planting visit in order to obtain objectively measured production quantities 

for the crop-cutting subplots, which are subsequently extrapolated to the full plot area. The final 

household visit took place following completion of all maize harvests. At this time, farmers were 

administered an additional questionnaire, which asked for the estimated total maize production per 

plot as well as fertilizer inputs and harvest labor inputs. 

 

 
8 Smallholder agricultural questionnaires in Uganda are structured such that there is a parcel of land, and within that 

parcel there may be multiple plots. The level of interest in this paper is the plot. In MAPS, a parcel was defined as “a 

contiguous piece of land with identical (uniform) tenure and physical characteristics. It is entirely surrounded by land 

with other tenure and/or physical characteristics or infrastructure e.g. water, a road, forest, etc.”  A plot was defined 

as “a contiguous piece of land within a parcel on which a specific crop or a crop mixture is grown. A parcel may be 

made up of one or more plots.” 
9 Because MAPS was a small-scale methodological validation study, great care was taken to ensure that there were no 

missing values for the key variables, therefore, there are no concerns of missing data. There were, however, 

circumstances that required the sample to be restricted to 840 from 900. Plots which did not have any soil fertility 

measurement (due to mismatching of soil sample labels) or no crop-cutting (due to non-compliance of households) 

are excluded. The missingness of soil measurement is likely independent of production on the plot as the missingness 

stems from errors by the enumerator or laboratory. It could be argued, however, that non-compliance by the household 

(in which they harvest the crop-cutting subplot before the enumerator’s arrival) could be a systematic problem in 

which households with fewer resources cannot afford to forgo the maize on the crop-cutting subplot. 
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In what follows, we provide more details on the methods used for data collection in domains that 

are central to our research. 

 

Soil fertility: 

Soil fertility testing was conducted by the World Agroforestry Center (ICRAF). During 

MAPS fieldwork, enumerators collected plot-level soil samples from each of the selected 

plots following a protocol carefully designed to maximize the representativeness of the 

samples while maintaining feasibility of implementation. From each plot, four samples 

were collected from the top-soil (0-20cm depth) and combined in the field to create one 

composite top-soil sample. Additionally, a single sub-soil sample (20-50cm depth) was 

collected from the center of the plot. After being processed locally, the samples were 

shipped to ICRAF Nairobi where all samples were subject to spectral soil analysis and 

approximately 10 percent were subject to conventional wet chemistry testing. A portion of 

this 10 percent sample was used to calibrate prediction models, while the remainder was 

used to verify the predictions made onto the spectral data. For details, see Shepherd & 

Walsh (2002). The final results from the soil analysis include key indicators of soil fertility 

such as pH, texture analysis (percent sand, percent clay), cation exchange capacity, and the 

concentration of multiple elements and micronutrients, such as carbon, nitrogen, and 

potassium. 

 

Maize yields:  

A 4x4 meter subplot (divided into four 2x2 meter quadrants) and a separate 2x2 meter 

subplot were laid on the randomly selected maize plot during the post-planting visit 

following a strict protocol to ensure the location of the subplots was random. The subplots 

were roped off until harvest, when the enumerators were alerted and completed the harvest 

with the assistance of the farmer and a local assistant. The shelled maize from each 2x2 

meter subplot was weighed and barcoded separately. The maize was then dried by a 

dedicated team at a central, monitored location until moisture content was in the range of 

12 to 14 percent. Once desired dryness was met, the maize was re-weighed, and the dry 

weight and final moisture content recorded. For analysis, all maize weights have been 

normalized to 12 percent moisture content.  

 

Plot area: 

Following conclusive evidence of systematic bias in farmer estimates of plot area among 

smallholder farmers in the region (see Carletto et al., 2013, Carletto et al., 2015, Carletto 

et al., 2017), MAPS implemented area measurement using a Garmin eTrex 30 handheld 

GPS device. Both the area and the raw GPS track outline were stored. 

 

Table 1 presents descriptive statistics of key variables. Every household in the sample cultivated 

at least one maize plot (1.89 maize plots on average). Plot sizes are small (0.15 ha on average) and 
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input rates are relatively low with 15% (4%) of plots being treated with inorganic fertilizer 

(pesticide). Average maize yields, as measured via crop-cutting, are 1068 kg/ha. Socio-economic 

indicators, plot manager characteristics, and agricultural variables are also included in Table 1, as 

they will be relevant for the analysis that follows.  

Table 1. Summary Statistics 

Notes: N = 840; ° Binary variable; + Road network distance to nearest FEWSNET market 

 

 

3.2.AFSIS 

 

Geospatially-derived soil data is more widely available to researchers and policy makers than plot-

level soil sampling linked to household surveys. Yet, geospatial data in this realm is of coarser 

granularity than what would be observed at the plot-level. In order to understand the implications 

of relying on geospatial soil data in cases where plot-level sampling is unavailable, we complement 

the analysis using MAPS-based soil properties with that using soil data drawn from one of the 

premier, publicly available geospatial soil databases – the Africa Soil Information Service’s 

AfSoilGrids250m data product.10 

 

The AfSoilGrids250m product, henceforth referred to simply as AFSIS, utilizes multiple inputs to 

construct a map of more than 15 key soil properties at 250-meter resolution across the entire 

African continent. Inputs to the product, including the Africa Soil Profiles database (Leenars et al., 

 
10 AfSoilGrids250m is a product developed by the World Soil Information (ISRIC) in collaboration with the World 

Agroforestry Centre (ICRAF), The Earth Institute (Columbia University), and the International Centre for Tropical 

Agriculture (CIAT).  

Mean Mean

Household Plot

Household size 6.12 Maize yield (kg/ha) 1068

Dependency ratio 1.35 Plot area (ha) 0.15

Female household head° 0.21 Distance from plot to HH (km) 0.13

Head age (years) 43.6 HH labor days 45.1

Head years of education 6.71 Hired labor days 5.89

HH received extension services° 0.36 HH purchased parcel° 0.23

Agricultural asset count 6.02 HH leased in parcel° 0.16

Distance to nearest market (km)
+

33.5 Plot treated with organic fertilizer° 0.04

Number of cultivated plots 2.90 Plot treated with inorganic fertilizer° 0.15

Number of maize plots 1.89 Plot treated with pesticide° 0.04

Plot Manager Rainfall:

Female manager° 0.39 Flowering season rainfall (2015, mm) 246

Manager age (years) 41.9 Long term mean flowering season rainfall (1981-2014, mm)211

Manager years of education 6.18

Manager completed primary education° 0.39

Manager received extension services° 0.31

Primary occupation is agriculture° 0.80
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2014), the Africa Sentinel Sites soil database (Vagen et al., 2010), the GlobeLand30 land cover 

database, and the SoilGrids 1km predicted values, are joined through the use of 3D regression 

kriging founded on random forests modeling (Hengl et al., 2015). A layer of geospatial data is 

produced for each soil property at anywhere from one to six different soil depths. 

 

Because MAPS georeferenced each agricultural plot, it is possible to join the AFSIS data with the 

center point of the agricultural plot and extract the point estimates of each soil property of interest, 

at the soil depths of interest. The following soil properties were extracted from AFSIS and utilized 

in the soil suitability analysis: cation exchange capacity, electrical conductivity, organic carbon, 

and pH. Each of these properties were available in depths of 0-5cm, 5-15cm, and 15-30cm. 

Because MAPS soil samples were taken at depths of 0-20cm and 20-50cm, we use a weighted 

average of the AFSIS 0-5cm and 5-15cm values for comparison with the MAPS 0-20cm samples. 

Subsoils, MAPS 20-50cm or AFSIS 15-30cm depths, are not utilized. Table 2 provides summary 

statistics for key soil properties derived from both the MAPS and AFSIS sources. 

Table 2. Comparison of Key Soil Properties Across Data Source 

  MAPS AFSIS 

Test of 

Difference 

pH 6.42 5.75 *** 

Cation exchange capacity (CEC, cmol/kg) 13.52 15.15 *** 

Organic carbon (%) 1.47 1.78 *** 

Electrical conductivity (salinity, dS/m) 0.06 0.10 *** 

N 840 840   

Notes: Two-sided p-values reported: *** p<0.01, ** p<0.05, * p<0.1 

 
4. Empirical Approach 

 

Various approaches to agricultural productivity are used in the agricultural literature, depending 

on research objectives and data availability. Average measures of productivity, including partial 

and total factor analysis, can be used to create a single statistic but the methods require high quality 

crop price data for the monetization of reported production that are often hard to come by in rural 

agricultural contexts with thin markets. Alternatively, marginal productivity analysis can be 

conducted with more direct policy-related takeaways. Cobb Douglas functions, and variations of 

Cobb Douglas, are commonly used (Deininger et al., 2007; Sherlund et al., 2002). The limitation 

of a simple linear production function in this context is that it assumes all farmers to be performing 

at optimal levels, without explaining the deviations between the observed and attainable 

(predicted) output levels. In order to allow for the analysis of the heterogeneity in production 

potential conditional on crop-specific suitability, one of the main objectives of the paper, we use 

stochastic frontier analysis, which allows for a better understanding of the aforementioned 

deviations.  
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The following two-step empirical approach is employed: (1) estimate crop suitability measures at 

the plot-level; and (2) estimate stochastic frontier models to estimate production frontiers for each 

class of maize suitability. The contribution of this paper comes from the ability to execute each of 

these steps on the same sample and from being able to do so with objectively-measured soil 

properties and crop production. In addition to executing the aforementioned analytical steps using 

the MAPS plot-level soil data, the steps are replicated using the geospatially-derived soil property 

data from AFSIS. 

 

4.1.Assigning Maize-Specific Soil Suitability Measures 

 

Estimating aggregate crop suitability measures requires comparing a vector of optimal soil 

properties against the levels of said properties observed on each plot. Crop suitability cannot be 

reduced to a single soil property, as several properties affect plant growth simultaneously, and soil 

property requirements vary by crop. The crop suitability framework set forth by FAO (1976), and 

illustrated in Figure 1, will serve as the foundation for the suitability classifications at the crop-

soil property level. The maize suitability analysis completed here includes pH, cation exchange 

capacity (CEC), organic carbon, salinity (soil electrical conductivity), and plot slope (percent).11  

 

After identifying the suitability class of each soil property individually, based on the property-

specific critical values borrowed from Naidu (2006) and further reviewed and modified with input 

from the World Agroforestry Centre, we utilize a fuzzy membership method to construct a 

membership grade for each suitability class, allowing for identification of the suitability class that 

best approximates the soil sample overall. The fuzzy membership method is commonly employed 

in land suitability analysis with GIS data (Ahamed et al., 2000; Ceballos-Silva & López-Blanco, 

 
11 Multiple variations of the soil suitability framework were created, each containing a different combination of key 

soil properties. The selected framework that was chosen based on its superior predictive power in bivariate regression 

on yields measured via crop-cutting.  

Maize Soil Property Y

S1: Highly Suitable

S2: Moderately Suitable

S3: Marginally Suitable

N: Not Suitable

Figure 1. Underlying crop-soil property suitability class structure, following FAO (1976). The maize 

suitability analysis completed here includes pH, cation exchange capacity (CEC), organic carbon, 

salinity (soil electrical conductivity), and plot slope (percent). 
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2003; Hall et al., 1992; Kahsay et al., 2018; Kalogirou, 2002). This method is also applicable to 

the plot-level MAPS data, however, as the data includes precise measures of soil parameters that 

are often extrapolated from lower resolution geospatial data. In this paper, the unit of analysis is 

the plot rather than the pixel as in geospatial analysis. 

 

The fuzzy membership method, drawn heavily from Ahamed et al. (2000) and Hall et al. (1992), 

begins with an identification of the similarity, or Euclidean distance, between the vector of soil 

properties on each plot, x, and the representative vector for a given suitability class. After 

normalizing values over the interval [0,10] for each property to eliminate unit-sensitivity 

(following Hall et al., 1992), the “distance measure” is constructed as follows: 

 

(1)    𝑑𝐸 (𝑥, 𝜇
𝑐
) =  √∑(𝑥𝑗 – 𝜇𝑐𝑗)

2
𝑛

𝑗=1

           

where: 

  

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  is the vector of soil parameters on a given plot; and 

𝜇
𝑐

= (𝜇𝑐1, 𝜇𝑐2, … , 𝜇𝑐𝑛) is the representative vector of soil properties that corresponds to 

suitability class, c. 

 

Equation 1 results in a distance measure for each suitability class, where a higher score reflects 

greater divergence (less similarity) between the properties on a given plot and the respective 

suitability class. Subsequently, a membership grade is computed for each suitability class, which 

indicates the relative fit of a given plot to the specific class, ranging from zero to one, allowing for 

comparison of fit across suitability classes. 

 

(2)    𝑓𝑐(𝑥̅) =  

1
𝑑𝐸 (𝑥̅, 𝜇̅𝑐)

∑  𝑚
𝑖=1

1
𝑑𝐸 (𝑥̅, 𝜇̅𝑖)

, where m = 4 (the total number of suitability classes)   

 

Equation 2 results in a plot-level membership grade for each suitability class based on a given 

crop’s representative vectors for each class. Each plot is then assigned the overall suitability class 

of that with the highest membership grade. It is important to note that the method above assumes 

equal weights for each of the soil properties, which may be a strong assumption considering 

agronomic needs. However, in the absence of literature upon which to anchor unequal weighting 

of soil properties for the Ugandan context, we utilize the equal weighting approach and leave 

exploration of alternative weighting schemes to future work. 
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In summary, the distance measure is an absolute measure of the difference between the soil 

properties on a given plot and a specific suitability class, while the membership grade is a relative 

score, ranging from zero to one, indicating the relative fit of a plot into each suitability class. The 

membership grades for S1, S2, S3, and N, therefore, sum to one for each plot. Two separate 

suitability class assignments are constructed for each agricultural plot: one derived from MAPS 

plot-level soil sample results and one from AFSIS geospatially-derived soil properties. 

 

4.2.Econometric Modeling of Production Frontiers 

 

Aigner, Lovell, and Schmidt (1977) lay out the potential problems in minimizing the sum of 

squares of a simple production function, such as Cobb Douglas, in estimating the maximum output 

for a given level of inputs. The authors argue that this method of estimation inadequately explains 

observed deviations from the maximum output for given levels of inputs. In their proposed 

stochastic frontier model, they explain the variation in deviations from the modeled maximum 

output, or the production frontier, and predict an observation-level measure of technical 

inefficiency.  

 

Much of the literature on stochastic frontier models assumes a translog production function, in 

which inputs into the production function are also interacted (see Greene (2008), Sherlund et al. 

(2002), and Ekbom and Sterner (2008)). This can, however, result in an explosion of parameters 

to be estimated in the case of many inputs, such as in agricultural models. Rather than the translog 

function, we assume a log-linear Cobb Douglas model, following the seminal work of Aigner, 

Lovell, and Schmidt (1977) and the agricultural examples set forth by Deininger et al. (2007), Kilic 

et al. (2009), and others. The estimated stochastic frontier model is as follows: 

 

(3)    ln(𝑌𝑖) = 𝛼 + ∑  𝛽𝑘 ln(𝑋𝑖𝑘) + 𝜀𝑖

𝐾

𝑘=1

                                                            

 

 (4)    𝜀𝑖 = 𝜈𝑖  − 𝜇𝑖                                                                                  

 

where 𝑌𝑖 is total maize grain output (in kilograms) on plot i, and 𝛼 and 𝛽𝑘 parameters to be 

estimated. X is a vector of traditional economic inputs, including land area, household and hired 

labor inputs, and inorganic fertilizer usage.12 As this is a rain-fed agricultural system, rainfall is 

also controlled for. Plot-specific flowering season rainfall was computed as total rainfall during 

the 5th to 8th dekads following the onset of seasonal rainfall, using CHIRPS timeseries precipitation 

 
12 Following Sherlund, Barrett, and Adesina (2002), zero values for hired labor and use of inorganic fertilizer were 

transformed logarithmically as follows: ln(0) = ln(strictly positive sample minimum/10). 



 

13 

data (Funk et al., 2015).13 The distance measure (from highly suitable soil), 𝑑𝐸 , is included in X 

for analysis conducted on the full sample, while the membership grades, 𝑓𝑐, are used to 

disaggregate the full sample into suitability-class sub-samples upon which the estimations are 

conducted separately (discussed in more detail below). Because both pure stand and intercropped 

plots are included in the sample, a dummy for the cropping pattern and a continuous variable for 

the seeding rate are also included in the X vector.14 Inclusion of indicator variables for 

administrative districts were attempted but were found to be problematic due to correlation with 

rainfall and other covariates. 

 

The error term, 𝜀𝑖, is disaggregated into a symmetric disturbance term, 𝜈𝑖 , and a non-negative 

disturbance, 𝜇𝑖 . The symmetric disturbance is assumed to be independently and identically 

distributed with 𝑁(0, 𝜎𝑣
2). It is assumed to be independent of 𝜇𝑖 and results from measurement 

error, climate-related shocks that affect production, and other exogenous shocks. The non-negative 

term, 𝜇𝑖, represents the technical efficiency of the household cultivating the plot, or the distance 

from the potential production frontier. It is assumed to be from truncated normal distribution, 

𝑁(0, 𝜎𝑢
2), with a zero-lower bound (Aigner, Lovell, and Schmidt, 1977). Furthermore, 𝜇𝑖 is 

modeled as a linear function of variables that are believed to explain a household’s technical 

efficiency or ability (Deininger et al., 2007; Kilic et al., 2009): 

 

(5)    𝜇𝑖 = 𝛾 + ∑  𝛿𝑗𝑍𝑖𝑗 + 𝜃𝑖

𝐽

𝑗=1

                                                                    

 

Zi is a J-vector of covariates used to explain technical efficiency, which includes plot manager age, 

an indicator for the manager’s attainment of primary education, an indicator for whether the plot 

manager received agricultural extension services, the dependency ratio of the household, and the 

number of agricultural assets owned by the household. Uncertainty around climatic factors, which 

may influence farmer behavior with respect to farming practices, is proxied by the coefficient of 

variation of flowering season rainfall (over the period 1999 – 2014), which is also included in Zi.  

Additional controls were initially included, such as gender of the plot manager and seasonal 

rainfall shocks, but due to correlation with other covariates and lack of explanatory power in linear 

regressions, these were ultimately excluded. Indicators of access to credit and public infrastructure 

could theoretically be included in Z, although data on these covariates are not available for this 

 
13 The onset of the season is defined following the Water Requirement Satisfaction Index (WRSI), such that the season 

begins when at least 25mm of rain falls in one dekad, and a total of at least 20mm of rain falls in the subsequent two 

dekads (documentation available here: https://goo.gl/sgmTK8). 
14 Pure stand plots are those on which only maize is grown. Intercropped plots are those on which maize and at least 

one other crop is grown. The “seeding rate” included here is a ratio of the quantity of maize seed used on the plot to 

the quantity of seed that would have been used had the farmer planted only maize. The seeding rate is, therefore, 

bounded (0,1] and equals 1 for all pure stand plots. The seeding rate is included in addition to the dummy variable for 

cultivation pattern because it is believed that some combinations of crops could improve potential maize yields. 

https://goo.gl/sgmTK8
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sample. The error term, 𝜃𝑖 , is assumed to be of a truncated normal distribution, with mean zero and 

truncated at −(𝛾 + ∑  𝛿𝑗𝑍𝑖𝑗)𝐽
𝑗=1 , such that 𝜇𝑖remains non-negative. 

 

Technical efficiency and the parameters from Equation 3 are estimated jointly using maximum log 

likelihood. The model, which substitutes Equations 4 and 5 into Equation 3, is estimated four times 

for each of the MAPS-based and AFSIS-based soil suitability measures: (i) including all plots and 

controlling for soil suitability with the inclusion of the distance measure from suitability class S1; 

(ii) including only plots classified as highly suitable (S1); (iii) including only plots classified as 

moderately suitable (S2); and, (iv) including only plots classified as marginally suitable (S3). 

Analysis is implemented on a sub-sample basis, rather than in a single model with suitability 

indicators, as it allows for the estimation of suitability-class specific production frontiers.  

 

Technical efficiency (TE) scores are computed based on the conditional distribution of 𝜇 given 𝜀 , 

following Battese and Coelli (1988), whereby the technical efficiency on plot i is defined as:  

 

(6)    𝑇𝐸𝑖 = 𝐸[exp (−𝜇𝑖)|𝜀𝑖]                                                                   

 

The technical efficiency scores are then used to compute potential production and productivity for 

the given level of inputs.15 

 

5. Results 

 

5.1.Maize-Specific Suitability Measures 

 

The fuzzy set membership method described above was implemented using both the MAPS plot-

level soil samples and the AFSIS geospatially-derived soil data. The results of the maize-specific 

soil suitability classification exercise are summarized in Table 3. Using the MAPS plot-level soil 

samples as the basis for classification, 13 percent of plots are considered highly suitable, the 

majority (75 percent) considered moderately suitable, and the remaining 12 percent of plots 

considered only marginally suitable. Note that classification into a specific group does not suggest 

that the plot-level soil properties fit that category in full. Rather, they are most closely aligned with 

that class relative to the other classes. No plots were classified as not at all suitable, in line with 

expectations as these are all maize-growing plots.  

 

 

 

 

 

 
15 Potential output is computed as: observed output/ technical efficiency score.  
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Table 3. Soil Suitability Classification Summary 

 

 

Benchmarked against the preferred method of plot-level soil testing, there is evidence that the 

geospatial data fails to adequately distinguish soil suitability levels. AFSIS-based classification 

results in more intense clustering of observations in the central, moderately suitable class (88 

percent), with only 7 percent classified as highly suitable and 6 percent as marginally suitable. 

While 81 percent of observations are mapped to the same suitability class regardless of whether 

MAPS or AFSIS soil data informs the classification, the suitability class of 19 percent of plots 

varies with the source of soil data utilized (see Figure 2), which will have economic implications 

for the perceived production frontiers for these households. 

 

 

Figure 2. Suitability Classification Matrix; MAPS- and AFSIS-based classifications. 

A unique feature of using this method is the ability to identify specific constraints to suitability for 

each class. According to MAPS-based suitability classifications, cation exchange capacity is an 

overarching limiting factor, with 43 percent of plots being classified as not suitable for that 

particular property. The perceived constraints differ when AFSIS-based classifications are made. 

For example, AFSIS-based classifications suggest that only 3 percent of plots have not suitable 

levels of cation exchange capacity (compared to 43 percent when using MAPS-based data). Annex 

Table A1 identifies the limiting factors for each MAPS-based suitability class separately, enabling 

an assessment of what interventions would be most effective in increasing the suitability of plots 

from one level to the next. 

Row-wise summary; binary variables, where 1 indicates soil property falls within given suitability class.

S1 S2 S3 N S1 S2 S3 N

pH 0.35 0.64 0.01 - 0.00 0.99 0.01 -

CEC 0.15 0.08 0.35 0.43 0.14 0.08 0.75 0.03

Organic Carbon (%) 0.27 0.37 0.34 0.02 0.38 0.51 0.11 0.00

Salinity (ECD) 1.00 - - - 1.00 - - -

Slope (%) 0.23 0.29 0.27 0.21 0.23 0.29 0.27 0.21

Overall Class 0.13 0.75 0.12 - 0.07 0.88 0.06 -

N 106 634 100 0 57 736 47 0

MAPS AFSIS

S1 S2 S3

S1 34 23 3

S2 72 607 57

S3 0 4 43

MAPS

A
F

S
IS
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The suitability classifications are consistent with expectations with respect to agricultural 

productivity. Figure 3 illustrates the distribution of maize yields (kg/ha) by suitability class. Using 

MAPS-based classifications, highly suitable plots realized an average of 1,614 kg/ha, while 

moderately and marginally suitable plots realized an average of 1,015 and 828 kg/ha, respectively 

(1,497 kg/ha, 1,053 kg/ha, and 789 kg/ha using AFSIS-based classifications). 

 

 

 

Figure 3. Productivity by Suitability Class; MAPS- and AFSIS-based classifications. S1, S2, and S3 

indicate highly suitable, moderately suitable, and marginally suitable soil for maize production, 

respectively. Note that existence of highly suitable soil does not, in itself, result in high maize yields, but 

rather increases the upper bound and incidence of high maize yields. 

5.2. Estimation of Production Frontiers 

 

The results of the stochastic frontier analyses are reported in Table 4. The MAPS- and AFSIS-

based overall estimations offer a fairly consistent understanding of output elasticities for most 

variables, suggesting that on average the geospatial soil data may be comparable, and potentially 

a substitute for, plot-level soil data. However, several findings temper the enthusiasm for the use 

of geospatial data as an acceptable substitute for plot-level soil data. The coefficients on soil 

suitability in these overall specifications, measured as the distance from the S1 vector, are both 

negative, thereby suggesting that the closer a plot’s soil is to the optimal, the greater its production, 

as expected. The MAPS-based soil data exhibits a stronger relationship with production than does 

the AFSIS data, and the OLS regression replicating the production function portion of the 

stochastic frontier model (see Annex Table A2) reveals that the coefficients on soil suitability (as 

Panel A: MAPS Panel B: AFSIS 
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measured by distance from S1) are statistically different across MAPS and AFSIS specifications.16 

Seasonal rainfall is only a moderately statistically significant input into production when 

controlling for plot-level soil suitability, but it is a strong and significant predictor in the AFSIS 

model. The latter finding comes contrary to expectations, as the plot-level soil data does not 

directly incorporate climatological variables while the AFSIS data does. A final notable difference 

in output elasticities across the overall specifications is that of inorganic fertilizer. Under the 

AFSIS model the application of inorganic fertilizer does not yield any statistically significant gains 

in production, contrary to expectations and findings in the MAPS-based model. This raises the 

first caution against the use of geospatial data as a substitute for plot-level soil data.  

 

 

 
16 A test of the difference in coefficients across the overall MAPS and AFSIS specifications, columns 1 and 2 in Annex 

Table A2, indicates that the coefficients (-0.082 and -0.050, respectively) are significantly different from each other 

at the 1 percent level. The test of difference in coefficients is implemented by the execution of a seemingly unrelated 

estimation of the two OLS models, followed by a Wald test of equality of the specific coefficients. 
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Table 4. Stochastic Frontier Analysis 

 
Notes: Standard errors clustered at EA level; † = insufficient variation for inclusion of variable or high correlation with other covariates; ° = Binary variable;  

*** p<0.01, ** p<0.05, * p<0.1 

Dependent Variable = Log of Total Maize Grain Production (KG)

S1 S3

Highest Membership Grade
MAPS AFSIS MAPS MAPS AFSIS MAPS

Distance from S1 -0.075*** -0.060***               

Plot Area (Hectares, Logged) 0.993*** 0.988***  1.018*** 0.977*** 0.995*** 1.094***

Household Labor Days (Logged) -0.048 -0.050 -0.121* -0.038 -0.045 -0.080

Hired Labor Days (Logged) 0.003 0.007 0.023 0.005 0.001 0.001

Inorganic Fertilizer (KG, Logged) 0.023* 0.015 0.008 -0.009 -0.014 0.024

KG of Seed Planted (Logged) 0.080** 0.081**   0.041 0.125*** 0.114*** -0.199**

Intercropping Rate (Logged) 0.200*** 0.194***  0.087 0.174** 0.167** 0.110

Pure Stand Maize° 0.206*** 0.233***  0.374** 0.253*** 0.283*** 0.169

Flowering Season Rainfall (mm, logged) 0.376* 0.737***  † 0.27 0.504* -0.734

Constant 5.072*** 2.939**   7.851*** 5.017*** 3.825** 11.506***

Technical Inefficiency

Manager Completed Primary Education° -0.011 -0.001 -0.167 0.010 0.01 -0.100

Manager Age -0.008 -0.007 -0.037 0.008 0.003 -0.076

Manager Age (squared) 0.000 0.000 0.000 0.000 0.000 0.001*

Manager Received Agricultural Extension Services° † † 0.284 0.076 0.066 0.570*

Dependency Ratio -0.029 -0.026 0.004 -0.016 -0.029 -0.297**

Count of Agricultural Assets -0.019 -0.019 -0.017 -0.021 -0.02 -0.042

CV of Flowering Season Rainfall (1999-2014) 1.303 1.047 -1.836 1.048 2.006** †

Constant 6.262*** 6.337***  3.859** 6.387*** 5.850*** 3.586***

Random Error Term (v)

Constant -1.949*** -1.857***  -3.140*** -1.807*** -1.718*** -2.033***

             

N 840 840 106 634 736 100

Overall S2
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Due to the small sample sizes and evidence of inconsistent matching of suitability classification 

relative to the MAPS plot-level soil sample classification, results are not reported in Table 4 for 

highly suitable (S1) or marginally suitable (S3) categories for AFSIS. Analysis on these categories, 

available in annex tables for all tables from this point forward, revealed highly-sensitive results 

contrary to expectations, including those expectations rooted in agronomic science, and, depending 

on the specification, implied potential yields far greater than agronomically feasible (for S1 plots). 

These unattainable potential yields, which are a function of low technical efficiency scores, support 

the descriptive finding that the geospatial data fails to sufficiently and consistently distinguish 

between maize-specific soil suitability relative to ground-based measures.17 Coefficients in the 

overall specification are generally in line with those reported for moderately suitable (S2) plots, 

both for MAPS- and AFSIS-based specifications.  

 

While AFSIS results for S1 and S3 are not reported here due to the sensitivity and inconsistency 

of findings (see Annex Table A3 for full reporting), there are takeaways from the comparison of 

MAPS S1 and S3 categories. Most apparent is the insignificant effect of cultivation pattern on S3 

plots. In this category, neither the binary indicator on pure stand cultivation nor the intercropping 

seed rate is significant, suggesting that production on S3 plots is unchanged with cultivation 

pattern. On S1 plots, however, returns to cultivating pure stand maize are positive and significant, 

and higher in magnitude than the returns to pure stand cultivation on S2 plots. Related to seeding, 

the S3 specification exhibits a negative and significant coefficient on quantity of seed planted. A 

negative coefficient on seed application is contrary to expectations. One potential explanation 

could be over-seeding on these lower-suitability plots in an attempt to encourage greater 

production, while serving only to crowd out successful plants. 

 

Across all specifications reported, technical inefficiency is largely unexplained by observable 

factors. While not statistically significant, coefficients on the technical inefficiency predictors are 

generally in the expected direction (Table 4). For example, the manager’s completion of primary 

school and count of agricultural assets both exhibit negative (but insignificant) coefficients in the 

overall specification, thereby hinting at a reduction in technical inefficiency. In the MAPS S2 

specification, manager education has a positive (and insignificant) coefficient, but its value very 

near zero. The coefficient on manager’s receipt of agricultural extension services is positive (but 

insignificant in all but MAPS S3 specifications), suggesting that use of extension services is 

correlated with increased technical inefficiency. It is conceivable, however, that this relationship 

is driven by those with lower technical efficiency self-selecting into the use of extension services. 

Only in MAPS S3 do we see statistically significant coefficients on household or manager 

characteristics: that on the household dependency ratio which suggests that technical inefficiency 

 
17 The technical efficiency scores derived from the AFSIS-based suitability classifications are sensitive to the variables 

in the technical efficiency model. When both the MAPS- and AFSIS-based stochastic frontier models are implemented 

without any controls in the technical efficiency specification, MAPS technical efficiency scores remain fairly stable 

while AFSIS technical efficiency scores vary widely for S1 and S3 classes. 
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on S3 plots is reduced in households with a greater dependency ratio, likely through labor channels; 

and that on the use of extension services. Uncertainty around rainfall patterns, proxied by the 

coefficient of variation in flowering season rainfall, has no significant relationship with technical 

efficiency in the majority of specifications. It does, however, exhibit a positive and statistically 

significant (at the 10 percent level) coefficient for AFSIS S2 plots, suggesting that increased 

uncertainty results in decreased technical efficiency.  

 

The lack of predictive power of observable household and manager characteristics on technical 

inefficiency is consistent with the results of separate productivity analysis conducted via ordinary 

least squares regression (available in Annex Table A4), in which none of the household or manager 

characteristics has a statistically significant relationship with productivity, with the exception of 

agricultural asset counts. It is conceivable that the use of crop-cutting-based production 

measurement, rather than farmer-estimated production as is most commonly utilized in 

smallholder agricultural analysis, results in a reduced effect of these manager characteristics. By 

using objectively measured production data, we eradicate the noise and/or bias associated with the 

plot manager’s estimate of production, which may be correlated with manager’s education, 

experience, exposure to extension services, etc. However, there is little empirical evidence to 

support this theory, at least within this particular dataset, as Gourlay et al. (2019) find that 

observable manager characteristics have very little explanatory power in yield overestimation 

(measured as self-reported production-based yield minus crop-cutting-based yield). 

 

Stochastic frontier analysis was also executed on subpopulations of interest, including plots with 

female managers, plots with male managers, and pure stand plots. Results of these analyses are 

available in Table 5. As the sample sizes of these subpopulations are small, it is difficult to draw 

conclusions on the S1 and S3 classifications so only the overall and S2 classifications are reported. 

Output elasticities across plot manager gender are similar, but male managed plots experience 

greater returns to soil suitability and only male managed plots have positive and significant returns 

to inorganic fertilizer application on average. Additionally, the impact of weather-related 

uncertainty varies by plot-manager gender, with only male-managed plots exhibiting a positive 

and significant relationship between uncertainty and technical inefficiency (while the converse is 

true with respect to current season rainfall inputs in the production function). Output elasticities 

on pure stand plots are in line with those observed across the full sample, with the exception that 

inorganic fertilizer application has greater impact on the production of pure stand plots.  
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Table 5. Stochastic Frontier Analysis on Select Subpopulations 

 

 

Dependent Variable = Log of Total Maize Grain Production (KG)

Highest Membership Grade
MAPS AFSIS MAPS AFSIS

Distance from S1 -0.088*** -0.071***              

Plot Area (Hectares, Logged) 1.040*** 1.019*** 1.046***  1.036***  

Household Labor Days (Logged) -0.077* -0.082* -0.031 -0.069

Hired Labor Days (Logged) -0.005 -0.004 -0.011 -0.019

Inorganic Fertilizer (KG, Logged) 0.046*** 0.039** 0.017 0.018

KG of Seed Planted (Logged) 0.032 0.03 0.042 0.052

Intercropping Rate (Logged) - - - -

Pure Stand Maize° - - - -

Flowering Season Rainfall (mm, logged) -0.069 0.476 -0.07 0.189

Constant 9.015*** 5.830*** 8.193***  6.905***  

Technical Inefficiency

Manager Completed Primary Education° 0.012 0.025 0.059 0.068

Manager Age † † † † 

Manager Age (squared) † † † † 

Manager Received Agricultural Extension Services° 0.045 0.074 -0.059 0.021

Dependency Ratio † † † † 

Count of Agricultural Assets 0.001 0.001 0.006 0.011

CV of Flowering Season Rainfall (1999-2014) -2.442 -3.691* -3.671 -2.858

Constant 7.068*** 7.284*** 7.181***  6.990***  

Random Error Term (v)

Constant -2.047*** -1.919*** -1.910***  -1.748***  

                          

N 367 367 274 323

- continued next page -

PURE STAND PLOTS

Overall S2
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Table 5. Stochastic Frontier Analysis on Select Subpopulations (continued) 

 

Notes: Standard Errors clustered at EA level; † = insufficient variation for inclusion of variable or high correlation with other covariates; ° = Binary variable; *** 

p<0.01, ** p<0.05, * p<0.1 

 

Dependent Variable = Log of Total Maize Grain Production (KG)

Highest Membership Grade
MAPS AFSIS MAPS AFSIS MAPS AFSIS MAPS AFSIS

Distance from S1 -0.056*** -0.039**             -0.084*** -0.073***             

Plot Area (Hectares, Logged) 0.935*** 0.939*** 0.802*** 0.960***  1.018*** 1.009*** 1.020*** 1.009***  

Household Labor Days (Logged) -0.072 -0.071 0.178* -0.057 -0.037 -0.043 -0.044 -0.047

Hired Labor Days (Logged) 0.016 0.024 0.024 0.005 0.001 0.000 -0.003 -0.003

Inorganic Fertilizer (KG, Logged) -0.008 -0.016 -0.069 -0.038*    0.034*** 0.026* 0.003 -0.006

KG of Seed Planted (Logged) 0.128** 0.131** 0.224*** 0.195***  0.045 0.044 0.070 0.067

Intercropping Rate (Logged) 0.058 0.011 0.039 -0.051 0.308*** 0.351*** 0.306*** 0.350***  

Pure Stand Maize° 0.108 0.153 0.277* 0.222*    0.264*** 0.265*** 0.288*** 0.314***  

Flowering Season Rainfall (mm, logged) 0.768** 1.038*** 0.534 0.878**   0.031 0.448 -0.154 0.220

Constant 3.282 1.826 1.784 2.541 6.581*** 3.969** 6.968*** 4.697**   

Technical Inefficiency

Manager Completed Primary Education° -0.064 -0.052 18.151*** -0.018 -0.013 -0.009 0.063 0.024

Manager Age -0.008 -0.006 -0.308* 0.018 -0.007 -0.007 † † 

Manager Age (squared) 0.000 0.000 0.005** 0.000 0.000 0.000 † † 

Manager Received Agricultural Extension Services° 0.205 0.209 3.786* 0.130 0.038 0.061 -0.011 -0.001

Dependency Ratio -0.079 -0.078 -13.581*** -0.057 † † † † 

Count of Agricultural Assets -0.031* -0.034* -0.490*** -0.044*    -0.012 -0.011 -0.010 -0.006

CV of Flowering Season Rainfall (1999-2014) -0.114 -0.149 † † 2.344* 1.966 2.970** 2.926**   

Constant 6.447*** 6.335*** -13.098*** 5.349***  6.231*** 6.399*** 5.984*** 6.039***  

Random Error Term (v)

Constant -2.099*** -2.053*** 0.029 -1.925***  -1.984*** -1.869*** -1.853*** -1.751***  

                         

N 324 324 259 286 516 516 375 450

Overall S2

FEMALE-MANAGED PLOTS MALE-MANAGED PLOTS

Overall S2
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5.3.Technical Efficiency, Potential Gains, and Economic Implications 

 

Technical efficiency scores, representing the distance from the potential production frontier, are 

computed in accordance with Equation 6. Figure 4 presents the distribution of technical efficiency 

scores under each suitability class for both MAPS- and AFSIS-based suitability classifications 

while Table 6 summarizes the scores, the potential production (in kilograms), and the potential 

yields (kilograms/hectare). As with the stochastic frontier analysis, AFSIS results are only reported 

for the overall sample and S2 classification (see Annex Table A5 for technical efficiency scores 

of S1 and S3 classes).  

 

Farmers cultivating MAPS-based S3 plots exhibit the highest technical efficiency scores, 

indicating they are operating most closely to the production frontier given their soil suitability. 

Farmers cultivating S1 and S2 plots have higher realized yields and lower technical efficiency 

scores, suggesting they have the potential to achieve the most significant gains in their maize yields 

vis-a-vis their already superior observed levels. T-tests reveal that while the technical efficiency 

scores of S1 and S2 plots are not different to a statistically significant degree, the scores between 

S1 and S3, and between S2 and S3, are statistically different at the 10 percent level. The resulting 

potential output per plot and potential output per hectare are significantly different at the 1 percent 

level, between all classifications.  

 

The gap between mean realized yield and potential yield is 1,394 kg/ha, or 86 percent of the 

realized mean yield, on S1 plots. S2 plots only have the potential to increase yields by 69 percent 

on average, while S3 plots are constrained to 59 percent yield growth from the 828 kg/ha realized 

average. Figure 5 presents the potential yield gains for each of the MAPS-based classifications and 

AFSIS S2 plots, illustrating the greater level and percentage increase in potential yields for more 

highly suitable plots.  

 

Table 6. Technical Efficiency and Productivity Potential 

 
 

 

 

Overall S1 S2 S3 Overall S2

Technical Efficiency 0.53 0.51 0.53 0.58 0.53 0.53

Potential Output (KG) 288.00 599.90 264.30 161.00 289.04 282.66

Potential Yield (KG/Ha) 1,804 3,009 1,714 1,315 1,811 1,754

Mean Output (KG) 176 333 162 97 176 175

Mean Yield (KG/Ha) 1,068 1,614 1,015 828 1,068 1,053

Potential-Mean Yield Difference 736 1,394 699 487 743 702

Difference as a % of Mean Yield 69% 86% 69% 59% 70% 67%

N 840 106 634 100 840 736

MAPS AFSIS
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Figure 4. Technical Efficiency by Suitability Class 

Figure 5. Potential Yield Gains by Suitability Class 
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Table 7. Season-Specific Potential Production Gains at Frontier Attainment 

  
Notes: † = Total household maize area estimated via multiple imputation founded on self-reported plot area estimates and other observable characteristics;            

* Monetary values estimated based on a FEWSNET price of UGX 1450 per kilogram of maize grain and converted at an exchange rate of 1 USD : 3354 UGX.  

S1 S2 S3 1 2 3 Male Female

Plot Level Means

Plot Area 0.146 0.182 0.144 0.121 0.125 0.161 0.152 0.151 0.126

Observed Yield 1068 1614 1015 828 1005 1046 1153 1091 981

MAPS-Based Potential Yield 1804 3009 1714 1315 1749 1822 1919 1860 1714

Production Gain if Attaining Productivity Frontiers:

MAPS Class-Specific Frontier (kg) 108 254 101 59 93 125 116 116 92

(USD)* 46 110 44 25 40 54 50 50 40

MAPS S1 Frontier (kg) 283 254 287 263 250 317 282 290 256

(USD)* 123 110 124 114 108 137 122 125 111

GAEZ High-Input Frontier for S1 Class (kg) 1050 1210 1043 897 906 1164 1080 1084 918

(USD)* 454 523 451 388 392 503 467 469 397

Household Level Means 

Total Household Maize Area
†
 (Ha) 0.283 0.283 0.286 0.264 0.238 0.297 0.314 0.296 0.232

Production Gain if Attaining Productivity Frontiers:

MAPS Class-Specific Frontier (kg) 208 394 200 129 177 230 241 228 170

(USD)* 90 171 87 56 77 99 104 99 73

MAPS S1 Frontier (kg) 549 394 571 576 477 582 583 568 470

(USD)* 237 171 247 249 206 252 252 246 203

GAEZ High-Input Frontier for S1 Class (kg) 2035 1880 2075 1962 1729 2140 2233 2124 1686

(USD)* 880 813 897 848 747 925 965 918 729

N 840 106 634 100 280 280 280 667 173

Total

MAPS Suitability Class Wealth Tercile Household Head
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To assess the potential production and income gains under various frontier attainment scenarios, 

Table 7 presents potential gains in terms of both kilograms and monetary values, for the specific 

plot as well as household level estimates. Household estimates are derived based on total area 

cultivated with maize by the household, which itself is imputed via multiple imputation methods 

to adjust for bias in self-reported area estimates.18 A key assumption underlying the household 

level estimates is that the household experiences the same level of productivity on all maize plots. 

The reported USD values of potential maize production gains are based on the November 2015 

Famine Early Warning Systems Network (FEWSNET) Uganda Price Bulletin kilogram unit price, 

and do not account for any additional expenditures required to attain the increased level of 

productivity.19  

 

If suitability-class-specific productivity gaps were closed such that all farmers were operating on 

their respective MAPS-based productivity frontier, the best-case scenario given soil constraints, 

households could produce an additional 208 kg, or USD 90, per bi-annual agricultural season, on 

average.20 Households classified as S3 under MAPS, assuming the suitability level is the same 

across all maize plots in the household, only have the potential to earn an additional USD 56 per 

agricultural season, while those in the highly suitable (S1) category can earn USD 171 more. 

Reaching this MAPS-based class-specific frontier has asymmetric benefits for female- and male-

headed households, with male-headed households earning USD 99 on average and female-headed 

households only USD 73.  

 

The benefits of operating at this frontier also differ across the wealth distribution, with those in the 

poorest tercile having the potential to earn USD 77 per season, USD 28 less than those in the 

richest tercile. If soil constraints were addressed such that all households were able to operate at 

the S1 frontier, households on average could increase production by 549 kg, or USD 237, per bi-

annual agricultural season. In this optimistic scenario, asymmetric benefits are still observed, 

particularly by gender of the household head where female-headed households still, despite 

reaching the S1 frontier, stand to gain less production than male-headed households. 

 

Finally, the MAPS stochastic frontier analysis and the resulting production frontier are anchored 

in the current management practices and technology set used by farmers. We make an additional 

 
18 While the plots selected for soil sampling were measured with handheld GPS devices, all other plots were only 

measured via farmer self-reported estimate. Following the evidence and methodology set forth by Kilic et al. (2017b), 

we use multiple imputation to impute GPS area measurements based on a number of observable characteristics 

including the farmer reported area. Multiple imputation was conducted by linear regression model including the 

covariates found in Annex Table A6, with 50 imputations conducted. Note that the farmer reported area did not 

significantly differ across plots that did and did not have a GPS measurement. The mean GPS-based area of the plots 

which have an original GPS measure is 0.146 hectares (n=840). The mean of the imputed-GPS measures is 0.148 

hectares (n=2437, which includes all cultivated plots regardless of crop).  
19 The FEWSNET unit price for maize grain is approximately 1450 UGX (https://goo.gl/JFs8d7), or 0.432 USD (using 

an exchange rate of 1 USD: 3354 UGX, a historical rate from November 30, 2015 from https://goo.gl/HHkfVu). 
20 AFSIS-based production comparisons are excluded from this particular analysis due to the low incidence and 

inconsistent suitability classifications found in the S1 and S3 categories. 

https://goo.gl/JFs8d7
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simulation to capture the potential economic gains that can be achieved by operating within a 

hypothetical, high input use scenario, as depicted in the geospatial data on potential agricultural 

yields that are disseminated by the Global Agro-Ecological Zone (GAEZ) initiative. The 

geospatial, modeled GAEZ data on potential crop yields factor in crop growth cycles, climate 

factors such as rainfall and temperature, soil moisture levels, geospatially-derived soil properties, 

among other factors. For each MAPS plot, the GAEZ potential maize yield under the high-input 

scenario was extracted based on the GPS coordinates of the plot centroid.21 If the GAEZ high-

input potential (as estimated for S1 plots) yields were to be attained on the sampled plots, the 

economic gains would increase dramatically, with households producing up to USD 880 per 

season on average. In this scenario, those in the richest tercile would enjoy greater gains over their 

current production levels than those in the poorest tercile. Female-headed households, on average, 

if operating at GAEZ high-input potential and irrespective of factors other than land quality and 

climatic covariates, still suffer from lower gains than male-headed households, with potential gains 

capped at USD 729 per agricultural season compared to USD 918.  

 

6. Conclusions 

 

In this paper we estimate a multi-dimensional measure of maize-specific soil suitability based on 

existing standards, across a sample of approximately 900 households, spanning 4 districts in 

Eastern Uganda, the leading maize-producing region in the country. This is made possible by 

collecting and laboratory-testing plot-level soil samples following international best practices in 

the context of a methodological household survey experiment. In addition to the plot-level soil 

data, analysis of maize-specific soil suitability is replicated using publicly available geospatial soil 

data. This research provides a greater understanding of both the heterogeneous productivity 

constraints and the potential maize-based production and income gains, across crop-specific soil 

suitability profiles.  

 

Classifying the sampled plots into three suitability classes, namely highly-suitable, moderately-

suitable, and marginally-suitable, and leveraging plot-level crop-cutting-based maize yields allows 

for comparison of the distributions of observed maize yields by suitability class. We then extend 

this analysis by estimating stochastic frontier models of maize yield separately for each suitability 

class, using both the MAPS-based and AFSIS-based suitability classifications, to understand 

differences in (i) returns to factors of production, (ii) technical efficiency, and (iii) potential yield 

measures. Compared to observed yields, the potential yield estimation provides a unique overview 

of maximum yield gains that can be achieved in each suitability class by increasing the efficiency 

with which the current set of inputs into agricultural production are utilized. Pairing the household 

 
21 Note that the GAEZ data is spatially derived, and therefore does not possess the same level of granularity as the 

MAPS-based data. For example, the GAEZ potential yields under the high input regime are not statistically different 

across any of the MAPS-based soil suitability classifications. 



 

28 

survey data with potential yield estimates from the FAO’s GAEZ database allows for an estimate 

of production gains if the technology set, or intensity of input use, is dramatically improved.   

 

The results clearly illustrate the production penalties for cultivating maize on land that is not highly 

suitable for maize production, particularly when using MAPS plot-specific soil samples. The use 

of AFSIS geospatially-derived soil data provided a close approximation to the results of the 

MAPS-based results on the overall sample but failed to distinguish between soil suitability classes 

to the same degree as, and in a consistent manner with, the MAPS plot-level soil data. The MAPS-

based analysis reveals that farmers cultivating only marginally suitable land are operating with 

higher technical efficiency and, thus, have less room for improvement than farmers cultivating 

more agronomically suitable land, given the condition of their soil. This result has implications for 

agriculture-based poverty reduction and food security policies. Effectively, by cultivating maize 

on land that is only marginally suitable rather than highly suitable, farmers limit their production 

potential by as much as 1,694 kg/ha, or 129 percent. Extrapolating the potential yields to the 

household level, based on multiply-imputed total maize area per household, suggests that given 

the current set of inputs and soil constraints households only have the potential to increase the 

value of production by USD 90 per bi-annual season. Assuming equal production in both 

agricultural seasons, and given the average household size of 6.12 persons, this translates into a 

gain of USD 0.08 per capita per day on average, not considering additional expenditures that may 

be required to reach that production frontier. For those cultivating marginally-suitable soils, they 

can hope to earn only an additional USD 0.05 per capita per day. If soil constraints were addressed 

such that all households operated on highly-suitable soils, potential gains would increase to USD 

0.21 per capita per day on average. Enhancing the technology set and achieving the GAEZ high-

input use potential yield on highly-suitable soil would increase gains to USD 0.79 per capita per 

day. Although these estimates of potential economic gains from agricultural production are only 

for maize, maize makes up 66 percent of cultivated land across all households. 

 

The findings hint that realizing agricultural production potential alone, given the current set of 

inputs and soil constraints, may not be sufficient for significant welfare gains. In order for 

agriculture to act as a key mechanism for poverty reduction, policies can include (i) significantly 

boosting the quantity and quality of inputs used by smallholder farmers, and (ii) implementing 

crop-specific agricultural interventions based on high-resolution soil data with the aim of 

increasing crop-specific soil suitability. Addressing specific soil deficiencies that render the land 

sub-optimally-suitable for a given crop, which can be identified with this dataset for example, can 

result in gains in agricultural productivity and associated income. Future research may include the 

analysis of interventions aimed at triggering a shift from one soil-suitability class to the next, and 

whether, considering the costs required for the shift, that would result in net gains for smallholder 

farmers. Additional work, in partnership with agronomic specialists, should be conducted on the 

application of an unequal weighting scheme in the suitability classification framework to confirm 
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whether the results are sensitive to the application of equal weights to individual soil properties in 

this context. 

 

From a methodological perspective, the experience of the MAPS study highlights the analytical 

value of integrating objective soil measurement into household surveys, while at the same time 

shedding light on the scalability of the current approach. The adoption of these methods in large-

scale household surveys, including those conducted by national statistical offices, will likely 

require, or at least benefit from, more scalable tools, such as in situ soil sensors (including handheld 

devices) that provide real-time measures of soil attributes during the fieldwork and increase the 

timeliness of data collection while reducing reliance on laboratories and overall costs. However, 

these tools require validation in the field, especially for use in smallholder farming systems. A 

related approach to facilitate the cost-effective scale-up of objective soil measurement in 

household surveys is through reliance on sub-sampling and imputation. In this case, soils can be 

objectively analyzed for an intelligently-selected sub-sample of agricultural plots and imputation 

methods can be leveraged to predict soil attributes for the remainder sample, with a model that is 

trained on the sample with objective soil measures, complementary survey data (including 

subjective assessment of soil characteristics) and publicly available geospatial soil data. The 

validation of this approach can too be a focus of future methodological research. To the extent that 

more scalable approaches are developed and integrated into recurrent household surveys in low-

income contexts, including longitudinal surveys, the resulting data would not only enhance the 

scope and accuracy of the research based on these data, but also inform downstream remote sensing 

applications, including on soil mapping, that would benefit from georeferenced, ground-truth 

measures of soil attributes.  
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7. Annex Tables 

 

Table A1. Maize Suitability Constraints, by MAPS-Based Suitability Classification 

Row-wise summary; binary variables where 1 indicates soil property falls within given class. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

S1 Plots

S1 S2 S3 N

pH 0.44 0.55 0.01 0.00

CEC 0.62 0.33 0.05 0.00

Organic Carbon (%) 0.92 0.08 0.00 0.00

Slope (%) 0.39 0.39 0.16 0.07

N = 106

S2 Plots

S1 S2 S3 N

pH 0.35 0.64 0.01 0.00

CEC 0.09 0.04 0.41 0.46

Organic Carbon (%) 0.20 0.43 0.35 0.02

Slope (%) 0.24 0.32 0.31 0.12

N = 634

S3 Plots

S1 S2 S3 N

pH 0.27 0.73 0.00 0.00

CEC 0.00 0.03 0.30 0.67

Organic Carbon (%) 0.02 0.30 0.62 0.06

Slope (%) 0.00 0.00 0.10 0.90

N = 100
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Table A2. OLS Regression of Production Function Portion of Stochastic Frontier Model 

Dependent Variable = Log of Total Maize Grain Production (KG) 

 

 
Notes: Standard Errors clustered at EA level; † = insufficient variation for inclusion of variable or high correlation 

with other covariates; ° = Binary variable; *** p<0.01, ** p<0.05, * p<0.1 

 
 
 

 

 
 
 
 
 
 
 
 
 
 

S1 S3

Highest Membership Grade
MAPS AFSIS MAPS MAPS AFSIS MAPS

Distance from S1 -0.082*** -0.050***

Plot Area (Hectares, Logged) 0.912*** 0.912*** 1.130*** 0.859*** 0.906*** 1.117***

Household Labor Days (Logged) 0.066 0.053 0.007 0.087 0.055 -0.041

Hired Labor Days (Logged) -0.008 -0.005 -0.021 -0.002 -0.013 0.002

Inorganic Fertilizer (KG, Logged) 0.029 0.019 0.027 -0.010 0.000 0.036

KG of Seed Planted (Logged) 0.162*** 0.164*** -0.153 0.255*** 0.206*** -0.260*

Intercropping Rate (Logged) 0.302** 0.303** 0.803 0.216 0.312** 0.115

Pure Stand Maize° 0.298*** 0.317*** 0.294 0.381*** 0.336*** 0.104

Flowering Season Rainfall (mm, logged) 0.529 0.887** † 0.611 0.664* -2.008**

Constant 2.219 0.003 3.950* 1.126 0.773 17.730***

N 840 840 106 634 736 100

R2 0.529 0.513 0.674 0.494 0.507 0.523

Overall S2
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Table A3. Stochastic Frontier Analysis on AFSIS-Based Suitability Classes 

 

Notes: Standard Errors clustered at EA level; † = insufficient variation for inclusion of variable or high correlation 

with other covariates; ° = Binary variable; *** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
 

Dependent Variable = Log of Total Maize Grain Production (KG)

AFSIS-Based Highest Membership Grade
Overall S1 S2 S3

Distance from S1 -0.060***                

Plot Area (Hectares, Logged) 0.988*** 0.936*** 0.995*** 0.982***

Household Labor Days (Logged) -0.050 0.035 -0.045 -0.233   

Hired Labor Days (Logged) 0.007 0.090*** 0.001 -0.028   

Inorganic Fertilizer (KG, Logged) 0.015 0.024*** -0.014 0.007   

KG of Seed Planted (Logged) 0.081* -0.090 0.114** 0.066   

Intercropping Rate (Logged) 0.194** 0.151*** 0.167* -0.119   

Pure Stand Maize° 0.233*** 0.212 0.283*** 0.102   

Flowering Season Rainfall (mm, logged) 0.737** † 0.504 -0.527   

Constant 2.939* 7.080*** 3.825* 11.735   

Technical Inefficiency

Manager Completed Primary Education° -0.001 -1.182* 0.010 -1.554*  

Manager Age -0.007 -0.458* 0.003 0.108   

Manager Age (squared) 0.000 0.004 0.000 -0.001   

Manager Received Agricultural Extension Services° † -0.779 0.066 †

Dependency Ratio -0.026 -0.980*** -0.029 -0.442   

Count of Agricultural Assets -0.019 0.088 -0.020 -0.478   

CV of Flowering Season Rainfall (1999-2014) 1.047 -14.882** 2.005* †

Constant 6.336*** 16.759** 5.850*** 0.038

Random Error Term (v)

Constant -1.857*** -32.264*** -1.718*** -3.352

            

N 840 57 736 47



 

36 

Table A4. Productivity Analysis with Maize Suitability Indicators 

 
Notes: Standard errors clustered on EA; ° = Binary variable; *** p<0.01, ** p<0.05, * p<0.1

OLS, dependent variable = log of maize yields (kg/ha)

Dep. Variable: log of maize yields (kg/ha)

Maize Suitability

Highest category (S1 comparator)

S2 -0.542*** -0.472*** -0.332 -0.283

S3 -0.687*** -0.693*** -0.581* -0.623**

Membership grade of S1 1.393*** 1.270***

Distance measure (to S1) -0.091*** -0.055***

Plot Characteristics

Log plot area (GPS, ha) -0.047 -0.041 -0.052 -0.048 -0.041 -0.057

Log distance plot - dwelling (GPS, km) -0.015 -0.022 0.001 -0.021 -0.028 -0.019

Pure stand° 0.311*** 0.318*** 0.321*** 0.335*** 0.338*** 0.333***

Log intercropping seed rate 0.362** 0.349** 0.323* 0.338* 0.334* 0.328*

Cover crops present before planting° 0.112 0.121 0.147 0.126 0.114 0.139

Log maize seed planted (kg) 0.140* 0.13 0.137* 0.154* 0.150* 0.152*

Used inorganic fertilizer° -0.032 -0.024 0.024 -0.075 -0.074 -0.03

Log household labor days 0.090 0.097 0.098 0.086 0.088 0.088

Log hired labor days -0.005 -0.004 -0.005 -0.003 -0.003 -0.002

Flowering season rainfall (2015, mm) 0.43 0.377 0.570 0.764 0.875 0.971

CV of flowering season rainfall (1999-2014) 1.399 1.405 1.213 1.842 1.087 1.591

Edge Effect: 

% of subplot within 4m of plot edge 0.137 0.134 0.141 0.142 0.147 0.141

Household Characteristics

Agricultural asset count 0.028* 0.029** 0.028** 0.029** 0.030** 0.029**

Dependency ratio 0.046 0.048 0.047 0.053 0.051 0.051

Log HH Size -0.143 -0.148 -0.133 -0.154 -0.158 -0.144

Manager Characteristics

Manager is respondent° -0.002 0.006 0.01 -0.003 -0.004 -0.006

Manager received extension services° -0.069 -0.073 -0.071 -0.107 -0.1 -0.098

Manager is female° 0.057 0.063 0.045 0.056 0.058 0.051

Log manager age (years) -0.114 -0.118 -0.147 -0.122 -0.13 -0.136

Log manager education (years) 0.017 0.0240 0.018 0.024 0.027 0.023

District

Mayuge 0.06 0.048 0.08 0.075 0.054 0.116

Serere -0.209 -0.217 -0.25 -0.236 -0.177 -0.185

Sironko 0.01 -0.032 0.16 0.032 -0.039 0.173

Constant 7.037*** 2.298 1.81 1.96 6.869*** 0.301 -0.703 -0.734

N 840 840 840 840 840 840 840 840

R
2

0.023 0.106 0.113 0.124 0.007 0.095 0.096 0.097

AFSISMAPS
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Table A5. Technical Efficiency and Productivity Potential for AFSIS-Based Suitability Classes 

 
 

Table A6. OLS Regression Guiding Multiple Imputation of Plot Areas 

Dependent Variable = GPS-Based Plot Area Measurement (Hectares) 

 
Notes: Standard Errors clustered at EA level; ° = Binary variable; *** p<0.01,  

** p<0.05, * p<0.1 

 

  

Overall S1 S2 S3

Technical Efficiency 0.53 0.47 0.53 0.35

Potential Output (KG) 289.04 512.54 282.66 212.85

Potential Yield (KG/Ha) 1,811 3,016 1,754 2,164

Mean Output (KG) 176 275 175 68

Mean Yield (KG/Ha) 1,068 1,497 1,053 789

Potential-Mean Yield Difference 743 1519 702 1376

Difference as a % of Mean Yield 70% 101% 67% 174%

N 840 57 736 47

AFSIS

Self-reported plot area (ha) 0.331***

Walking time to parcel > 30 mins° 0.000

Parcel is leased in° 0.011

Parcel was purchased° -0.013

Parcel has coffee trees° -0.013

Self-reported parcel area (ha) 0.004

Number of plots on farm -0.003

Household head is female° -0.016

Household head is married (monogamous or polygamous)° -0.006

Household head age (years) 0.000

Household head education (years) 0.001

Dependency Ratio 0.004

Household Size 0.004**

Wealth Index 0.012*

District

Mayuge -0.004

Serere 0.051***

Sironko 0.009

Constant 0.070***

N 840

R
2

0.283
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