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Abstract 

Every year, disasters account for billions of dollars in crop production losses in low- and middle-

income countries and particularly threaten the lives and livelihoods of those depending on 

agriculture. With climate change accelerating, this burden will likely increase in the future and 

accurate, micro-level measurement of crop losses will be important to understand disasters’ 

implications for livelihoods, prevent humanitarian crises, and build future resilience. Survey data 

present a large, rich, highly disaggregated information source that is trialed and tested to the 

specifications of smallholder agriculture common in low- and middle-income countries. However, 

to tap into this potential, a thorough understanding of and robust methodology for measuring 

disaster crop production losses in survey microdata is essential. This paper exploits plot-level panel 

data for almost 20,000 plots on 8,000 farms in three Sub-Saharan African countries with 

information on harvest, input use, and different proxies of losses; household and community-level 

data; as well data from other sources such as crop cutting and survey experiments, to provide new 

insights into the reliability of survey-based crop loss estimates and their attribution to disasters. 

The paper concludes with concrete recommendations for methodology and survey design and 

identifies key avenues for further research. 
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1. Introduction 
Between 2008 and 2018, disasters accounted for declines in crop and livestock production totaling 

USD 108.5 billion in low- and lower-middle income countries (LMICs), with the impact expected 

to further exacerbate with climate change (FAO, 2021). This toll is not only significant from an 

aggregate economic perspective, but its consequences are particularly dire in the poorest countries 

where over two-thirds of the population directly depend on agriculture for their livelihoods. Recent 

estimates by the FAO (2021) suggest that as much as 6.9 trillion kilocalories, equivalent to the 

amount it would take to end undernourishment among half of the undernourished population in 

low-income countries,2 are lost to disasters diminishing crop and livestock production in the 

developing world. 

With the impacts large in magnitude, widespread throughout LMICs, and likely to exacerbate, the 

accurate measurement of disaster-induced damages and losses3 has been identified as a key 

component for economic development4 and enshrined in Sustainable Development Goal 1.5.2 and 

Sendai indicator C. A large share of the disaster impact in LMICs accrues in agriculture and 

particularly due to reductions in pre-harvest crop production (FAO, 2018). Therefore, their 

accurate measurement at a micro-level is paramount to track progress toward the SDG and Sendai 

goals and inform strong disaster risk reduction strategies. 

In a recent effort to provide a standardized methodology for measuring damages and losses in 

agriculture, Conforti, Markova and Tochkov (2020) propose the use of survey data to measure pre-

harvest losses in crop production. However, there is yet scant evidence applying the method for 

micro-level loss measurement and a need for refinement to make full use of a variety of data 

sources including agricultural household survey data and geospatial data (FAO, 2018). This paper 

conducts a thorough descriptive assessment of the suitability of existing survey data to measure 

pre-harvest production losses of annual crops in LMICs at the micro-level. For this, it draws on a 

diverse set of data sources, rich plot-level data on harvest, inputs and different losses proxies along 

with household- and community-level data from the Living Standards Measurement Study – 

Integrated Surveys on Agriculture (LSMS-ISA), geospatial data, as well as experimental data from 

crop cut and survey experiments, in three SSA countries. 

The paper’s approach is guided by a set of six distinct questions that we attempt to empirically test 

and mold into concrete recommendations for survey design and measurement. These questions fit 

into two broad issues for the measurement of disaster crop losses, the quantification of losses (i.e. 

 
2 Authors’ calculations based on (FAO et al., 2020; Our World In Data, no date; World Bank, no date) 
3 Throughout this paper, we follow the definitions employed in (FAO, 2021, pp. 198–200): 

“Disaster: A serious disruption of the functioning of a community or a society at any scale due to hazardous events 

interacting with conditions of exposure, vulnerability and capacity, leading to one or more of the following: human, 

material, economic and environmental loss and impacts (UNDRR Terminology).” 

“Damage: The monetary value of total or partial destruction of physical assets and infrastructure in disaster-affected 

areas, expressed as replacement and/or repair costs.” In agriculture, this comprises, for example, the destruction of 

stored agricultural inputs or assets used in the production process. 

“Loss: The change in economic flows occurring as a result of a disaster.” In the context of this paper, the focus will 

be on losses due to declines in crop production. 
4 Specifically, accurate measurement of damages and losses matters for: 1. disaster risk reduction; 2. poverty 

eradication; 3. food security; 4. climate change action; and 5. sustainable development (FAO, 2020).  
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the size of crop losses) and their attribution to specific disasters. For the quantification of losses, 

the paper assesses the suitability of proxies based on (i) land area and crop damage, (ii) expert 

assessments, (iii) past harvest data or data from similar but unaffected plots, and (iv) farmers’ post-

planting expectations to inform a micro-level crop production loss estimate. Subsequently, it (v) 

studies the reliability of self-reports for linking losses to specific disasters and (vi) compares them 

to geospatial data on disaster exposure. 

Based on these questions, the paper makes a contribution in three ways. First, it operationalizes 

the methodology proposed in Conforti, Markova and Tochkov (2020) for use with state-of-the-art, 

crop production survey data at the plot level based on the format of the LSMS-ISA questionnaire. 

Second, the paper provides an in-depth investigation into the feasibility of measuring pre-harvest 

crop production losses due to disasters at scale and yet a highly disaggregated level and provides 

concrete recommendations for survey design. As such, it informs a new generation of survey data 

that facilitates the integration of a diverse set of data sources for measurement and analysis. Lastly, 

the paper identifies crucial remaining knowledge gaps and delineates relevant avenues for future 

research. Importantly, the methodology explored lends itself primarily to small- to medium-sized 

disasters and those with slow onset (e.g. droughts). For large scale disasters and swift policy action 

requiring an immediate appraisal of damages and losses, post-disaster needs assessments (PDNAs) 

and aggregate-level analyses may present complementary vehicles that are more readily 

deployable. 

The remainder of this paper is structured as follows. Section 2 contextualizes the measurement of 

disaster crop losses in the literature and depicts the key approaches and challenges associated with 

their accurate quantification and attribution to disasters. Section 3 introduces the data sources the 

paper draws on and the key questions that motivate its empirical strategy. Section 4 presents the 

paper’s analysis for each of these questions while Section 5 closes with our headline findings and 

highlights key takeaways as well as open questions. 

 

2. Crop Production Losses Measurement in the Literature – 

Approaches and Challenges 
To accurately measure crop production losses due to disasters, this paper distinguishes between 

two issues, first, the quantification of crop production losses, that is determining their magnitude, 

and second, attributing losses to specific disasters. 

The task of measuring crop production losses relates to a large body of research broadly concerned 

with crop yield prediction and the explanation of geographical and intertemporal variation in 

yields. Part of this is an extensive agronomic literature measuring yield potential, that is the 

optimum achievable yield in a certain location without limitations from pests, diseases, nutrition, 

or suboptimal crop management apart from uncontrollable factors such as temperature or 

precipitation in rainfed systems (Lobell, Cassman and Field, 2009; van Ittersum et al., 2013; 
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Grassini et al., 2015; van Loon et al., 2019).5 These studies typically employ so-called “process-

based crop models”, mathematical models using daily data on a host of biophysical conditions to 

simulate the processes associated with plant growth. Models differ in their inclusion of different 

processes (such as crop phenology, light interception and utilization, or evapotranspiration) and 

their respective parametrization (Rosenzweig et al., 2014). They can thus yield different results 

and are often combined in an ensemble to reduce variance and improve accuracy (Asseng et al., 

2013; Rosenzweig et al., 2014; Zhao et al., 2017). 

Yield gaps, however, do not provide estimates of the counterfactual harvest in the absence of 

disaster impact. Rather, they measure productivity gaps and thus reflect gaps in resources used, 

technology employed, and crop management efficiency as are prevalent in smallholder agriculture 

in LMICs (Assefa et al., 2020; Beza et al., 2017; Mueller et al., 2012). Furthermore, achieving 

yield potential may not even be desirable from an efficiency perspective due to diminishing returns 

to crop management effort and input use (van Ittersum et al., 2013). While yield gaps are based on 

the yield potential under optimal management but conditional on uncontrollable factors such as 

weather shocks, this paper’s interest lies on the exact opposite: Given the farming practices 

observed but in the absence of shocks, what is the attainable yield and consequently the disaster-

related loss? 

Another stream of literature studies the sources of crop yield variability across years and different 

farms, regions, or even countries (Restuccia and Rogerson, 2013; Gollin, Lagakos and Waugh, 

2014; Adamopoulos and Restuccia, 2018; Gollin and Udry, 2021). This literature finds that, among 

other factors, the stochastic nature of the production process (e.g. due to weather shocks) accounts 

for a significant share in the variability of yields (Ray et al., 2015; Amare et al., 2018; Gollin and 

Udry, 2021). 

Related to this is a literature analyzing farmers’ decision making in the face of uncertainty over 

future shock realizations. In the context of LMICs, future shock expectations and importantly also 

observed behavior have been found to vary according to differences in risk preferences, e.g. due 

to past shock exposure (Gloede, Menkhoff and Waibel, 2015; Said, Afzal and Turner, 2015; 

Cassar, Healy and von Kessler, 2017; Brown et al., 2018; Hanaoka, Shigeoka and Watanabe, 

2018), access to information, e.g. weather forecasts (Karlan et al., 2014; Rosenzweig and Udry, 

2019), and access to insurance markets, e.g. rainfall index insurance (Giné, Townsend and 

Vickery, 2009; Karlan et al., 2014). Furthermore, large differences in idiosyncratic expectation 

building have been found (Freudenreich and Kebede, 2019). 

These findings matter for this study in that they suggest that not only current-season shock 

realizations but also past shock experiences and future expectations of shocks account for 

variability in crop yields. While this paper’s main interest is in measuring losses due to actual 

disaster exposure, disaster crop losses themselves may be endogenous. This is because the 

aforementioned factors matter for farmers’ expected returns to their farming decisions and their 

resulting behavior, such as input decisions, sets an effective ceiling for the attainable harvest. 

 
5 This literature is commonly concerned with the measurement of yield gaps, i.e. the difference between potential 

and realized yields. 
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However, it is important to note that this paper is primarily concerned with the measurement of 

disaster crop losses as opposed to identifying their causal drivers. In as much as our identification 

strategy for measuring losses is thus unaffected by these factors, they do not pose a major challenge 

for this study. 

On the methodological side, a strand of literature relevant for this paper is concerned with 

estimating and forecasting the climate change impacts on agricultural yields. For this, three 

approaches are common (Challinor et al., 2014; Liu et al., 2016; Zhao et al., 2017). The first two 

approaches use process-based crop models in conjunction with meteorological models and can be 

split into grid-based models (e.g. Rosenzweig et al., 2014; Webber et al., 2018) and less coarse 

but more geographically scattered site-based models (e.g. Asseng et al., 2013).6 These models are 

also becoming increasingly popular as in-season, real-time monitoring tools for early crop loss 

prediction and swift relief (e.g. the World Food Program’s LEAP tool employed in Ethiopia and 

documented in Drechsler and Soer (2016)). 

As discussed previously, crop models vary in their data requirements but usually require a rich set 

of sensor data at high frequency and sufficient spatial resolution. They are thus demanding for 

accurate, large-scale, and micro-level measurement in LMICs where smallholder agriculture with 

small and irregular plot sizes, intercropping, and large idiosyncratic variations in yields are the 

norm. Despite recent advancements in high resolution yield estimation (e.g. Burke and Lobell, 

2017), survey data may thus provide complementary information. Survey data are typically the 

data source for a third approach in the climate change and crop yield literature that employs 

statistical modeling based on observed harvest data at varying levels of aggregation (e.g. Lobell, 

Schlenker and Costa-Roberts, 2011; Imran, Zurita‐Milla and Stein, 2013; Liu et al., 2016). 

Survey data may be a valuable source of complementary information for several reasons. 

1) They can provide information down to the plot-crop level and thus possibly higher micro-

level accuracy than most grid-based models to date. This opens up opportunities for better 

understanding of micro-level dynamics that can inform disaster risk reduction policies. 

2) They provide high data density. Relative to site-based models, this reduces the need for 

strong assumptions about the generalizability of the sample for larger aggregates (though 

it may not eliminate it entirely) (van Wart et al., 2013; van Bussel et al., 2015). 

3) They provide an approach that may be more suitable to the peculiarities of smallholder 

farming in LMICs (see above). 

4) They are able to pick up non-meteorological sources of crop losses such as pests and 

diseases (Liu et al., 2016). 

5) Their information can be effortlessly integrated with other information collected in surveys 

that make understanding, for example, behavioral components of crop management 

 
6 In comparison to gridded models that rely on remote-sensed data of sufficiently high resolution, site-based models 

typically use sensor data collected at several distinct experimental sites, e.g. farms or even single plots. While the 

former can thus cover a larger geographic area and may be more representative for aggregate measurement, the 

latter has the advantage of more fine-grained measurement based on data observed “on the ground”. 
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possible. This facilitates causal investigations into variation in crop losses or the micro-

level impacts of disasters (Hallegatte and Rozenberg, 2017; Markhvida et al., 2020). 

Importantly, this paper does not study nor does it propose the use of survey data as a substitute for 

the other approaches presented. Rather, it highlights how survey data may yield additional insights 

and ultimately contribute to the development of more accurate, integrated approaches suitable for 

the context of LMICs. For example, high-quality survey data may be useful to train remote-sensing 

algorithms (Jain et al., 2016) and survey data, geospatial data, and/or crop model data can be 

combined in statistical models to improve accuracy and analyze causal relationships (Imran, 

Zurita‐Milla and Stein, 2013; Hill and Porter, 2017). 

Next to the issue of determining the magnitude of crop losses (quantification), accurately 

attributing losses to disasters is an essential challenge for this paper to study. As the most common 

disasters in our study region are rainfall-related (FAO, 2018, 2021), this task poses some 

challenges akin to those covered in the literature on agricultural index insurance (Miranda and 

Farrin, 2012; Cole et al., 2013; Karlan et al., 2014; Tadesse, Shiferaw and Erenstein, 2015). 

Self-reported insurance claims may be hard to verify without significant administrative effort and 

may thus be subject to moral hazard and adverse selection (Tadesse, Shiferaw and Erenstein, 

2015). To overcome issues of information asymmetry and reduce administrative costs, insurance 

contracts that tie payouts to a local index proxying for disaster impact intensity, e.g. a rainfall 

gauge placed at a representative location for a small geographic area, have received considerable 

attention in the literature. However, while “measuring” shock exposure through an index provides 

an objective proxy, it leaves farmers with a certain “basis risk”, the possibility that the index does 

not capture idiosyncratic deviations at the farm or even plot level. 

Basis risk is a substantial impediment to the uptake of index insurance (Giné, Townsend and 

Vickery, 2008; Miranda and Farrin, 2012; Cole et al., 2013; Karlan et al., 2014; Jensen, Mude and 

Barrett, 2018) and of particular concern in heterogenous regions with many micro-climates 

(Barnett, Barrett and Skees, 2008). The extent of basis risk furthermore depends on shock intensity 

with more severe shocks reducing the idiosyncrasy in incidence (Barnett, Barrett and Skees, 2008; 

Hazell and Hess, 2010; Jensen, Barrett and Mude, 2016). Consequently, most insurance payouts 

have been found to constitute large, infrequent payouts in response to severe disasters (Giné, 

Townsend and Vickery, 2007). Yet, idiosyncratic risks have been found to be substantial in the 

case of smallholder livestock farming and inadequately covered by index insurance (Jensen, 

Barrett and Mude, 2016). This suggests that crop losses could be quite localized and require fine-

grained measurement to accurately attribute losses to disasters. Similarly, a number of studies have 

found large variation in drought exposure between different measures. Notably, farmers’ self-

reported shock exposure commonly deviates from measured data collected from weather stations 

or satellite data (Meze-Hausken, 2004; Sohnesen, 2020). Determining the degree of idiosyncrasy 

in farmers’ self-reported shock exposure and disentangling variation due to differences in 

perception from differences in actual exposure is thus also a relevant issue for this paper. 

Lastly, a number of factors commonly studied in the behavioral literature may matter for the 

measurement of crop production losses through survey data (Schilbach, Schofield and 
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Mullainathan, 2016; Waldman et al., 2020). Examples include availability bias7 (Tversky and 

Kahneman, 1973; Karlan et al., 2014; Brown et al., 2018), scarcity8 (Shah, Mullainathan and 

Shafir, 2012; Mani et al., 2013; Lichand and Mani, 2020), satisficing9 (Krosnick and Presser, 

2010), and a large body of methodological research on the accuracy of farmers’ self-reports 

(Carletto, Savastano and Zezza, 2013; Carletto, Gourlay and Winters, 2015; Arthi et al., 2018; 

Gourlay, Kilic and Lobell, 2019; Wollburg, Tiberti and Zezza, 2021). 

 

3. Empirical Strategy and Data 
In exploring the suitability of survey data for disaster crop loss measurement, this paper will be 

guided by the methodology for damages and losses assessment in agriculture that was recently 

developed in Conforti, Markova and Tochkov (2020) for the FAO (henceforth also “the FAO 

methodology”). Complementing previously developed disaster impact assessment approaches by 

the United Nations Economic Commission for Latin America and the Caribbean  (UN ECLAC, 

2003) and the multi-agency Post Disaster Needs Assessment methodology (European Union, UN 

Development Group and World Bank, 2013), they provide a standardized methodology for 

measuring damages and losses due to disasters across the agricultural sub-sectors of livestock, 

forestry, aquaculture, fishery, and (this paper’s focus) crops. To measure the impact in the crop 

sector, the FAO methodology distinguishes between annual and perennial crops as well as damage 

(e.g. the destruction of stored inputs or stored crops) and loss (e.g. reductions in crop yields). 

DL (Crops) = Annual crop prod. damage + Perennial crop prod. damage + Annual crop prod. loss 

+ Perennial crop prod. loss + Crop assets damage 

where DL(Crops) is the total monetary value of damages and losses in the crop sub-sector. This 

paper’s focus will be crop production losses of annual crops.10  

In keeping with Conforti, Markova and Tochkov (2020), we can distinguish between two types of 

crop losses. The first case describes losses due to reductions in harvested area. It occurs when parts 

of the planted area are fully destroyed and thus all harvest was lost in these areas.11 The second 

type of crop loss arises due to reductions in productivity of the plants harvested. This case occurs 

 
7 For example, Karlan et al. (2014) find that farmers overweight recent adverse events in their investment decisions. 
8 Lichand and Mani (2020), for instance, find that the mere prospect of adverse rainfall and thus income reductions 

reduced farmers cognitive abilities in a range of survey experiments. 
9 For example, providing an estimate of disaster crop losses, in theory, involves estimating the counterfactual harvest 

in the absence of shocks which is complex and may lead to the use of heuristics and inaccuracy in self-reports. Such 

complex questions have been found to be error prone without careful survey design and the provision of appropriate 

aids that simplify the task (Krosnick, Narayan and Smith, 1996; Krosnick and Presser, 2010; Delavande, Giné and 

McKenzie, 2011). 
10 We expect our findings to similarly apply to perennial crops. However, they bring added complexity due to the 

possible cumulation of shocks across seasons.  
11 For example, part of a plot may have been flooded completely wiping out the harvest in the flooded area. 
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when a disaster only partially affects an area, reducing yields but leaving something to be 

harvested.12 Equation 1 formalizes this relationship. 

𝐿𝑖,𝑗,𝑡 = [𝑝𝑖,𝑔,𝑡−1 × 𝑦𝑖,𝑗,𝑡
𝑐 × (ℎ𝑎𝑖,𝑗,𝑡

𝑐 − ℎ𝑎𝑖,𝑗,𝑡
𝑟 )] + [𝑝𝑖,𝑔,𝑡−1 × (𝑦𝑖,𝑗,𝑡

𝑐 − 𝑦𝑖,𝑗,𝑡
𝑟 ) × ℎ𝑎𝑖,𝑗,𝑡

𝑟 ] + 𝛾 (1) 

 

Where Li is the quantity of annual crop i lost; j is the unit of observation (e.g. the plot or the farm); 

t is the season where the disaster occurred; pi,g,t is the price of crop i in geographic zone g in the 

time period immediately before the disaster13; yr is the realized (disaster-reduced) yield and yc the 

counterfactual yield that would have been achieved in the absence of a disaster; har is the area that 

was harvested and hac  the full planted area (the area that would have been harvested in the absence 

of a disaster); γ are short-run post disaster maintenance costs.14 

Conceptually, measuring crop production losses due to disaster thus boils down to comparing the 

realized yield yr to a counterfactual yield yc. More precisely, the counterfactual yield is the yield 

that would have been realized in the absence of any disasters holding all other factors such as input 

decisions, farming practices, or non-disaster shocks constant. In the following, we refer to this as 

the “attainable yield” (Loïc et al., 2018). In partially affected areas where plants are less 

productive, losses are then calculated by multiplying the difference between attainable and realized 

yield by the size of the harvested area har. For the remainder of this paper, we will refer to these 

as “plant productivity losses”.15 Analogously, in completely destroyed areas, losses are obtained 

by multiplying the attainable yield by the size of the completely destroyed area (the difference 

between the planted area hac  and harvested area har ). Such losses will be referred to as “planted 

area losses”. 

Three important points are evident from the distinction between realized and attainable yield. First, 

whenever losses due to disaster occur, the attainable harvest will be unobserved and thus becomes 

the key unknown to determine.16 Second, in econometric terms, the challenge is to single-out the 

adverse effect of disasters on yields and clean identification relies on the ability of any 

methodology to adequately control for potential confounding factors. Third, measurement 

crucially depends on the choice of an accurate benchmark for the counterfactual yield. For this, 

the FAO methodology suggests the use of past yield data, e.g. based on a multi-year trend. Other 

 
12 For instance, in some areas, pests may damage the plants, reducing their productivity but not completely 

destroying them. 
13 For the remainder of this paper, we focus on the quantification of losses as this poses the key methodological 

challenge to measurement and leave their valuation for future research that may also look into the feasibility of 

creating aggregates from micro-level crop loss measurement. 
14 For example, this could be the costs associated with removing uprooted trees and branches from a field or clearing 

a field of waterlogging. As these costs are comparatively straightforward to assess by valuing the time required and 

equipment hired to do so, we will not consider them further for the sake of this paper. 
15 In keeping with the phrasing in the surveys used for this study, we will use the term “damage on the crop” 

interchangeably. Note that these are distinct from “damages” as defined in Footnote 2 and rather a special case of 

“losses” as defined in the same footnote. 
16 Trivially, therefore, only in the complete absence of any disaster losses will realized harvest equal attainable 

harvest and the latter thus be observable. 

Losses due to reductions in productivity in 

partially affected areas 

Losses due to reductions in the area harvested 

in fully destroyed areas 
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proposed options include the use of average yield data from comparable districts unaffected by 

any shocks or yield forecasts based on meteorological and remote-sensed data (FAO, 2020). 

As the accuracy of different approaches for micro-level measurement of the attainable yield 

through surveys likely varies, their empirical assessment constitutes the first goal of this paper. 

We call this the “quantification of losses”. Concretely, the paper explores a number of survey-

based ways to measure or proxy for the attainable harvest using plot-level data17 including 

(i) explicitly measuring planted area losses and plant productivity losses based on farmers’ 

self-reports; 

(ii) expert assessments of the share of the attainable harvest that was lost; 

(iii) obtaining attainable yields from past data or comparable but disaster-unaffected plots; 

(iv) using farmers’ post-planting harvest expectations to proxy for the attainable yield. 

Importantly, these approaches need not be mutually exclusive, and the paper will aim to highlight 

the respective strengths and weaknesses of each approach in an aim to combine them for best 

results. 

In addition to the quantification of losses, the second crucial focus of this paper is the attribution 

of losses to specific disasters. One possible approach relies on self-reported shock identification, 

either from the farmer, a community congregation, or an ‘expert’. Here, the paper analyzes the 

consistency of shock identification on plots of the same crop in close proximity and thus assesses 

the suitability of self-reports to confidently attribute losses to disasters. Alternatively, the paper 

compares self-reported drought exposure to geospatial rainfall data to obtain a similar “objective 

measure” as in the agricultural index insurance literature. Through this, it aims to disentangle 

variation in self-reports due to different shock exposure from variation due to differences in 

farmers’ perceptions. Notably again, the paper also explores the scope for integrated approaches 

that combine self-reported and sensor data to harness the strength of each. 

For our analysis, we draw on a diverse set of data sources. Our main data source is rich plot-level 

household survey panel data18 for two Sub-Saharan African countries, Ethiopia and Malawi, 

supported by the Living Standards Measurement Study – Integrated Surveys on Agriculture 

(LSMS-ISA). The LSMS-ISA data have a distinct focus on agriculture and contain, among others, 

detailed data on harvest, input use, crop management, as well as a large set of community, 

household, and individual characteristics. The agricultural modules of the surveys feature a two-

visit structure in which each household was visited after planting and again after the harvest had 

been completed. At the first visit, among others, self-reported information on input use, plot 

characteristics, and expected production are elicited while the second visit asks farmers about their 

 
17 This is in contrast to other approaches including the “default” angle of the FAO methodology which aim to 

measure crop losses at the farm-level or higher. 
18 The LSMS-ISA data we use are farm-level panels but not necessarily plot-level panels due to constant changes in 

plot dimensions and the crops cultivated on them (Carletto, Gourlay and Winters, 2015). In this version of the paper, 

we therefore do not exploit the panel dimension of our data and treat each wave as a separate cross section. 

However, this does not mean that the fact that we are dealing with panel data does not carry advantages for our 

analysis. For example, it should attenuate concerns about changes in the sample when comparing descriptives across 

rounds. An exception is ESS18 in Ethiopia which received a new baseline sample in this round and is thus not 

strictly comparable (from a panel perspective) to the sample from previous rounds. 



 

11 
 

realized production and any crop losses incurred. In the case of Ethiopia, we furthermore have 

crop cut data for a sub-sample of plots.19 The data are available publicly in the World Bank 

Microdata Library20 and cover almost 20,000 plots across over 8,000 farms. We complement this 

data with data from a crop cut and survey experiment, the Methodological Experiment on 

Measuring Maize Productivity, Soil Fertility and Variety (MAPS) in Uganda. Table 1 summarizes 

our data sources. 

The main unit of analysis for this paper is the plot with separate information for each crop 

cultivated on the plot. This high level of disaggregation is a feature of our data compared to other 

approaches that typically analyze losses at the farm level or higher.21 In Ethiopia, the analysis 

focuses on two of the major staple crops in the country, maize and sorghum, while in Malawi the 

paper analyzes maize as the country’s foremost crop cultivated. Furthermore, we also build a plot-

level aggregate of total harvest value on the plot (i.e. across all crops cultivated for every plot of a 

farm) in local currency units in Malawi to verify the robustness of our analysis to the inclusion of 

all crop types. The analysis centers around the main agricultural season in each of the two 

countries, the Meher season in Ethiopia and the rainy season in Malawi.  Where applicable, the 

paper expresses production quantities in total kilogram terms as well as in per hectare terms. The 

plot sizes used are measured by GPS if available or for small plots with rope and compass in the 

case of Ethiopia. To correct for outliers in self-reported harvest and input variables as well as our 

crop losses estimates, per hectare variables are winsorized at the 0.01 percentile. 

Table 1: Data sources and sample sizes. 

 

  

 
19 Crop cuts have been termed the “gold standard” to obtain an objective measure of crop yield (Carletto, Gourlay 

and Winters, 2015). 
20 https://microdata.worldbank.org/index.php/catalog/lsms 
21 However, it is important to note that in case of urgent need of swift policy action in response to a sudden disaster, 

more aggregate approaches to measuring crop losses retain validity for the relative speed at which they can be 

conducted. 

Country Data Source Sample Size Survey Rounds 

Ethiopia Ethiopian Socioeconomic Survey (ESS) 13,570 plots 
2013/14, 2015/16, 
2018/19 

Malawi Integrated Household Panel Survey (IHPS) 5,998 plots 
2010/11, 2013/14, 
2016/17, 2019/20 

Uganda 
Methodological Experiment on Measuring Maize 
Productivity, Soil Fertility and Variety (MAPS2) 213 plots 2016 
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4. Analysis and Results 

We divide our analysis into two key issues, the quantification of losses, i.e. determining how 

much was lost, and the attribution of losses to specific disasters. For each of these issues, the 

paper’s analysis is guided by a set of concrete questions that are empirically assessed in the 

LSMS-ISA data. 

Quantification 

Question 1: Can we separately measure planted area and plant productivity losses in survey data 

and form a robust, compound loss estimate? 

Question 2: How do farmer reports compare to crop losses based on expert assessments and can 

we establish an objective, reliable benchmark (‘gold standard’) for crop losses? 

Question 3: Can data from past harvests serve as a suitable benchmark for attainable harvest? 

Question 4: Can farmers’ post-planting harvest expectations be used to construct an estimate of 

harvest losses? 

Attribution 

Question 5: How uniform is farmers’ self-reported shock identification of covariate shocks? 

Question 6: How localized are drought losses and how confidently can we attribute losses to 

adverse rainfall based on self-reports? 
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Table 2: Main questions and approaches for analysis. 

 

4.1. Quantification: How high are losses? 

Question 1: Can we separately measure planted area and plant productivity losses in survey data 

and form a robust, compound loss estimate? 

In the stylized framework set out in Section 3, losses can manifest in two complementary ways 

capturing different types of losses. The first are losses due to reductions in the size of the harvested 

Issue Approach Estimate of interest Proxy Availability 

Quantification 

Q1: Measuring 
different types of 

losses and building a 
compound estimate 

Losses due to reductions 
in planted area ("planted 
area losses") 

Approximately what percent of [PLOT] 
planted with [CROP] was harvested? 

Malawi: IHPS19 
Ethiopia: ESS13, 
ESS15, ESS18 

Losses due to 
productivity decline 
among harvested crops 
("plant productivity 
losses") 

What is the percentage of damage on 
[CROP]? 

Ethiopia: ESS13, 
ESS15, ESS18 

Q2: Using losses 
assessed by an 'expert' 

Consistency of self-
reports and expert 
assessments 

What percentage of the potential maize 
harvest was lost due to damage on [PLOT]?  

Uganda: MAPS 

Q3: Exploiting the cross 
sectional or time 

dimension of survey 
data 

Attainable yield based 
on past yield or 
unaffected districts 

Past yield realizations or yields from similar 
but unaffected plots 

  

Q4: Relying on farmers' 
self-reported harvest 

expectations 

Attainable yield based 
on farmers’ post-
planting expectations 

How much of [CROP] do you expect to 
harvest during the main rainy season? 

Malawi: IHPS10, 
IHPS13, IHPS16, 
IHPS19 
Ethiopia: ESS15, 
ESS18 

Attribution 

Q5: Relying on farmers’ 
self reported shock 

identification 

Consistency of self-
reported shock exposure 

Plot-level reports of losses cause; 
Household-level shock reports; Community 
reports 

Malawi: IHPS10, 
IHPS13, IHPS16, 
IHPS19 
Ethiopia: ESS13, 
ESS15, ESS18 

Q6: Index-based shock 
identification 

Consistency of self-
reports with geospatial 
rainfall data 

Geospatial/sensor data on rainfall intensity 

Malawi: IHPS10, 
IHPS13, IHPS16, 
IHPS19 
Ethiopia: ESS13, 
ESS15, ESS18 
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area vis-à-vis what was planted (“planted area losses”).22 However, losses may also occur if harvest 

could occur on part of the plot but plants in the harvested areas have some sort of damage that 

makes them less productive (e.g. pests destroying some cobs or some plants not developing 

properly due to poor weather conditions). The latter is what this paper calls “plant productivity 

losses”.23 Consequently, it is necessary to find survey-based measures for reductions in the area 

harvested24 and reductions in productivity in harvested areas.25 

In relation to the general form expressed in Equation (1), we observe GPS measured plot area, hc, 

and realized production Yr. The two key unknowns to measure in the survey data are the reduction 

in the planted area and the reduction in productivity. We use a question on the percent share of the 

planted area that was harvested, si,j,t, to obtain the harvested area, hr, and the realized yield in 

harvested areas, yr. We then obtain the attainable yield, yc, from yr by accounting for plant 

productivity losses through a question on the percentage of damage on the crop, di,j,t. Therefore, in 

Ethiopia, the loss estimate built in this section will be a compound one consisting of a) planted 

area losses (the first term), and b) productivity (damage) losses (the second term). 

𝐿𝑖,𝑗,𝑡 = [(
𝑌𝑖,𝑗,𝑡

𝑟

ℎ𝑎𝑖,𝑗,𝑡
𝑐 ×𝑠𝑖,𝑗,𝑡

×
1

1−𝑑𝑖,𝑗,𝑡
) × (ℎ𝑎𝑖,𝑗,𝑡

𝑐 − ℎ𝑎𝑖,𝑗,𝑡
𝑐 × 𝑠𝑖,𝑗,𝑡)] + [((

𝑌𝑖,𝑗,𝑡
𝑟

ℎ𝑎𝑖,𝑗,𝑡
𝑐 ×𝑠𝑖,𝑗,𝑡

×
1

1−𝑑𝑖,𝑗,𝑡
) −

𝑌𝑖,𝑗,𝑡
𝑟

ℎ𝑎𝑖,𝑗,𝑡
𝑐 ×𝑠𝑖,𝑗,𝑡

) × ℎ𝑎𝑖,𝑗,𝑡
𝑐 × 𝑠𝑖,𝑗,𝑡] (2)  

We next take this approach to the data.26 

 

 

 
22 One example may be the partial flooding of a plot which destroys the harvest completely in one part but due to 

plot slopes etc. leaves the rest of the plot unaffected. 
23 For example, pests or a crop disease may completely wipe out the harvest in parts of the plot but only lead to 

partial losses in other parts of the plot that could still be harvested. 
24 In the LSMS-ISA data, farmers are asked for each crop on each plot at the post-harvest visit whether the planted 

area was greater than the area harvested and (if applicable) what the percent share of the planted area that was 

harvested was. A value of 0 percent indicates a full loss and values between 1 percent and 99 percent denote partial 

losses of the planted area. Farmers are also asked to choose up to two reasons for their loss from a list of shocks or 

specify another reason. 
25 This information is only available in the Ethiopia LSMS-ISA data. Farmers are asked for each crop on each plot 

whether there was any damage on the crop and what the percentage share of and reason for this damage was. In fact, 

this set of questions is asked twice, once at the post-planting visit and again at the post-harvest visit. Intuitively, one 

would assume for damage on the crop to only ever increase. However, we find that, depending on the survey wave, 

in up to 25 percent of cases damage reports at the post-planting visit exceed those at the post-harvest visit. 

Furthermore, this is not due to trivial differences that could originate from rounding error or the like. We take note 

of this and trust post-harvest reports for the purpose of loss calculation as these should constitute the most updated 

farmer estimates of damage. 
26 Unless specified otherwise, the analysis excludes plots where the harvest was completely lost (the equivalent of an 

area loss of 100 percent on the plot). The main reasons for this is to avoid bias in our estimates stemming from a (by 

construction) perfect fit between the area loss measure and the realized harvest quantity. Furthermore, the distinction 

between area and plant productivity losses is not meaningful in this case and there is no way to infer the attainable 

yield according to Equation (2) in the lack of any realized harvest. To estimate total loss on fully destroyed plots, the 

attainable yield can, for instance, be inferred from the median attainable yield on similar or near plots with at most 

partial losses. 
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What do we see in the data? 27 

Comparing the area-based and productivity-based proxy in a histogram suggests that the 

productivity-based proxy is more sensitive to small losses. That is, farmers report having any plant 

productivity losses more frequently, but these losses tend to be smaller. Conversely, the planted-

area-based proxy records fewer losses but these tend to be higher. Across years and crops, the 

incidence of plant productivity losses is much higher with about 1 in 2 plots recording some 

damage on the crop whereas only every fifth plot records reductions in the area harvested 

compared to what was planted.28 Conditional on recording a loss though, planted-area-based losses 

tend to be larger. 

Consistent with what has been found in other cases in the survey methodology literature, 

respondents tend to round numbers to convenient values divisible by ten or 25. A particularly 

conspicuous spike can be found at 50 percent likely reflecting the convenience of this value and 

easy interpretation. This pattern is consistent with the presence of considerable satisficing, the use 

of heuristics or “mental shortcuts” to reach a (in the respondent’s eyes) satisfactory rather than 

optimal answer (Krosnick and Presser, 2010). 

Three factors mediate the degree of satisficing to be expected (Krosnick, Narayan and Smith, 

1996): (i) the difficulty of the task; (ii) the farmer’s ability to complete the task; and (iii) the 

farmer’s motivation to provide an accurate estimate. Each of these concerns likely applies to our 

context. First, estimating average losses, particularly when differentiating between average 

reductions in productivity and the area completely lost, is cognitively challenging. Furthermore, 

percentages may not be a straightforward concept and lack an intuitive “benchmark” to correctly 

assess differences in magnitude along a percentage scale.29 Secondly, the respondents in our 

sample are overwhelmingly low-educated with over two-thirds not having any school education 

and only a rough one-fifth having completed primary education in the case of Ethiopia. They also 

likely have little practice in performing this kind of task as the LSMS-ISA survey only has a two- 

to three-year frequency. Thirdly, the LSMS-ISA questionnaires are of substantial length, 

frequently requiring interviewing respondents over several hours and on multiple days. This may 

increase respondent fatigue and decrease the motivation to provide an accurate estimate.As a 

result, a percent difference of 10 percent or 20 percent, well within the conceivable margin of error 

for the amount of heaping we observe, may appear small to the farmer (and hence of satisfactory 

accuracy) but would lead to substantial measurement error (“weak satisficing”). Alternatively, 

 
27 Our exposition will focus on Ethiopia where we can measure both planted area losses and plant productivity 

reductions. In Malawi, we only have loss reports from one round (IHPS19) and also only for planted area losses 

which equates to a scenario where di,j,t = 0, that is, where realized yields in harvested areas are equal to attainable 

yields in harvested areas and the only losses occur due to complete destruction of parts of the plot. When limiting 

our analysis to this proxy though, results between Ethiopia and Malawi are largely comparable with some notable 

differences in the incidence of area losses (60 percent of plots in Malawi vs. 20 percent of plots across rounds in 

Ethiopia). This may reflect the planted area loss question compensating for a lack of a separate question asking for 

productivity reductions. 
28 To avoid a hard-to-read histogram due to a dominant spike at 0 percent area-based loss and 0 percent damage, we 

constrain the histograms depicted to those plots who record any loss (i.e. positive values on the horizontal axis). 
29 For a similar reason, the use of visual aids is common when eliciting probabilities or other relative numbers from 

subjects with low numeracy (Delavande, Giné and McKenzie, 2011). 
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farmers may choose to simply report a value that they believe will appear credible in the eyes of 

the enumerator (“strong satisficing”).  

What does a compound loss estimate from these two proxies look like in the Ethiopia LSMS-ISA 

data? Figure 2 depicts the average realized harvest, plant productivity loss, and planted area loss 

for each round and crop.30  

  

 
30 For production, area loss and crop damage correspond to the first and second term, respectively, in Equation (2) 

with realized production being Yr. The entire stacked column corresponds to the average attainable production on 

plots without full losses. For yield, values are per hectare of the planted area hc. Taken together, the entire column 

corresponds to the average attainable yield on maize (sorghum) plots without full losses. 

Figure 1: Histograms of planted area loss and plant productivity loss measures. 
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As an initial observation, accounting for plant productivity reductions crops in the area harvested 

naturally increases the loss estimate. The size of the overall (average) loss and its composition 

furthermore varies between years and crops. While plant productivity reductions account for the 

largest share of losses for maize, planted area losses are notably larger in size for sorghum. 

Furthermore, the 2015/16 survey round clearly sticks out with larger losses, particularly for 

sorghum. This is consistent with the literature reporting the worst drought in decades for this 

agricultural season (Philip et al., 2018; Sohnesen, 2020). 

If our proxies were accurate measures of production losses, perfectly complementary, and losses 

the only significant factor according to which realized yields would vary over the years, we would 

expect the average attainable harvest to be roughly comparable in size over the years. Instead, the 

average attainable yield, i.e. the height of the stacked bar, considerably varies across rounds and 

is particularly high in 2015/16. This should most likely not be taken as an indication that yields 

would have been exceptionally high if it had not been for the drought. Rather, it is evidence in 

favor of some overlap between our planted area and plant productivity loss measures and resulting 

overreporting of losses. This may be related to the salience of losses with small losses perhaps 

more likely to be overlooked or underreported in years without severe shocks but large losses at 

the same time overreported if shock salience is high as was likely the case in 2015. 

Figure 2: Mean realized harvest and mean planted area and plant productivity loss by 
round and crop. 
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Table 3: Loss-to-harvest ratio across survey rounds and crops in Ethiopia. 

      
Area 

Harvested % 

Plant 
productivity 
reduction % Kg Kg/Ha 

 

Maize 

ESS13 
Loss/Harvest Ratio 

91.5 18.1 
0.27 1.01  

Loss/Harvest Ratio (any loss) 0.28 0.96  

ESS15 
Loss/Harvest Ratio 

88.9 25.3 
0.61 1.44  

Loss/Harvest Ratio (any loss) 0.58 1.2  

ESS18 
Loss/Harvest Ratio 

90.1 18.1 
0.36 0.94  

Loss/Harvest Ratio (any loss) 0.34 1.01  

Sorghum 

ESS13 
Loss/Harvest Ratio 

88.1 19.8 
0.66 0.66  

Loss/Harvest Ratio (any loss) 1.79 1.75  

ESS15 
Loss/Harvest Ratio 

79.4 40 
2.08 2.51  

Loss/Harvest Ratio (any loss) 3.32 3.73  

ESS18 
Loss/Harvest Ratio 

88.4 20 
0.63 1.61  

Loss/Harvest Ratio (any loss) 0.53 1.16  

Note: The table reports the ratio of estimated losses to self-reported harvest on maize and sorghum plots for the whole sample and only 
for plots who have had any loss, by survey round. 

 

 

Our graphical analysis is further complemented by Table 3. Generally, there is little variation 

between rounds in the average percent plant productivity reduction and percent area harvested. 

However, compared to the two other survey rounds, the Ethiopia Socioeconomic Survey 2015/16 

(ESS15) clearly stands out as 

• More plots had any plant productivity reduction (irrespective of crop) 

• More sorghum plots lost some of the planted area 

• The average size of losses for maize (plant productivity loss) and sorghum31 (plant 

productivity loss and planted area loss) was notably larger. 

Conspicuously though, while our losses proxies tell a clear story consistent with the notion of a 

large drought in 2015/16, this is not supported by average self-reported or crop cut yields. This 

finding is not unique to our analysis and is extensively discussed in Sohnesen, (2020) who finds 

that while meteorological data and self-reported shock reports are consistent with a severe drought, 

this is not supported by vegetation indices and crop yields. In our case, higher than usual reports 

of area and productivity reductions combined with yet relatively normal realized production leads 

the loss-to-production ratio to be considerably larger in ESS15 with a few unrealistically large 

outliers in loss estimates (cases where the loss per hectare exceeds the highest realized yield on 

any plot in the sample for the respective year). 

 
31 Higher losses for sorghum are not in line with the literature on crop drought resilience though and should thus be a 

reflection of sorghum being planted more often where drought (and thus losses) is/are more severe. This is 

confirmed by comparing GIS rainfall data to 14-year average rainfall - for maize and sorghum plots, respectively. 
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One possible reason for losses to be inflated would be if the two proxies were not complementary 

but overlapped instead. The accuracy of the loss estimate crucially hinges on farmers being able 

to clearly differentiate between planted area- and plant productivity losses. For example, the 

differentiation between planted area and plant productivity losses may not always be as clear cut 

as in theory and may result in farmers not treating the questions on the share of planted area 

harvested and the percentage of damage on the crop as independent, complementary questions. As 

a result, there may be some overlap between both questions which would lead to our loss estimate 

being inflated. Another potential source of error is heterogenous plant productivity reductions 

across the plot. The question for productivity reductions we are using relies on farmers’ ability to 

accurately report the average plant productivity loss in harvested areas. However, productivity 

reductions may be very heterogenous affecting some plants more and others less, especially when 

the plot is large. Forming an accurate estimate of the average percentage share of productivity 

reductions is thus arguably difficult. As a result, farmers may struggle to report the average plant 

productivity reductions accurately and rather satisfice. 

 

While this paper cannot determine the degree of overlap and inaccuracy with certainty, it is 

possible to explore whether both proxies independently add explanatory power to a yield 

regression and carry the expected signs. This is confirmed in Table 4, however, the increase in 

explanatory power when controlling for productivity reductions on top of area reductions is 

relatively small. Furthermore, the actual loss estimate carries less predictive power than the 

percentage-based area and productivity reduction variables (not reported). Therefore, while the 

area and productivity measure seem somewhat complementary and serve as suitable proxies for 

ETHIOPIA: Yield regressions with area- and productivity-based losses - Excl. Full Losses
(1) (2) (3) (4) (5) (6)

ESS13 ESS15 ESS18 ESS13 ESS15 ESS18

VARIABLES Maize Maize Maize Sorghum Sorghum Sorghum

Planted area harvested (%) 0.00567** 0.00359* 0.00813*** 0.00713 0.00329 0.00415*

(0.00238) (0.00213) (0.00292) (0.00551) (0.00252) (0.00224)

Damage on crop (%) -0.00862*** -0.0114*** -0.00708*** -0.00838*** -0.0168*** -0.00541**

(0.00169) (0.00170) (0.00265) (0.00201) (0.00267) (0.00266)

Constant 4.659*** 4.640*** 4.944*** 4.776*** 5.182*** 5.406***

(0.352) (0.284) (0.431) (0.604) (0.371) (0.313)

Observations 2,853 2,846 1,586 2,370 2,291 1,230

Adjusted R-squared 0.370 0.346 0.190 0.284 0.391 0.318

District FE YES YES YES YES YES YES

Controls FULL FULL FULL FULL FULL FULL
Note: Regression of log yield on loss proxies. Control variables: Inputs - log plot area, log total labor on the plot per hectare, hired labor 

dummy, log seed quantity per hectare, improved seed dummy, log inorganic fertilizer quantity per hectare, organic fertilizer dummy; 

Household Characteristics - dependency ratio, dummy for any HH member with at least primary education, agricultural asset index; 

Manager Characteristics - female dummy, age, dummy for at least primary education; Plot - intercropping dummy, soil fertility index; 

and a number of district fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1"

Table 4: Yield regression with area and plant productivity loss measures. 
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different types of losses, combining them does not seem to lead to an accurate estimate of crop 

losses. 

 

What do we conclude and still need to know? 

We find that proxying for losses on a percent scale captures ordinal differences in losses fairly 

well, i.e. their rough magnitude, however, they are inherently hard to handle and lack a tangible 

benchmark for farmers. This makes them prone to measurement error where, in the eyes of a 

farmer, even seemingly small inaccuracies in their reports of percent area and productivity 

reductions create considerable error in absolute terms. Furthermore, there is a risk of overlap 

between the two measures that is particularly high if shocks were more severe. At the same time, 

small losses may go undetected or may be underreported in years with low shock intensity. As a 

result, we observe an overestimation of losses in years with severe shocks. The accuracy of our 

measurement may be further compromised by very heterogenous plant productivity reductions 

which would make it hard to report a single, averaged productivity reductions figure. The two 

measures thus serve as approximations of the magnitude of losses but giving them an interval-

scale interpretation is less accurate. 

Therefore, by measuring losses due to reductions in the planted area that was harvested and losses 

due to reductions in productivity, respectively, we gain complementary information on the size of 

crop losses. Together, the two measures also correctly identify years in which losses were 

conceivably particularly high. However, the questions are prone to satisficing by farmers and can 

cause large measurement error in absolute loss estimates. Consequently, the survey questions used 

may need improvements to be suitable for actually inferring the attainable harvest (and thus loss). 

Several (non-exclusive) options emerge: 

• Improving the phrasing of both proxies, clearly differentiating planted area losses from 

productivity reductions 

• Providing (visual) aid in handling percentages more accurately and consistently 

• Directly asking for losses by merging both proxies into a single question eliciting the loss 

benchmarked against what farmers believe could have been their attainable harvest 

 

Question 2: How do farmer reports compare to crop losses based on expert assessments and can 

we establish an objective, reliable benchmark (‘gold standard’) for crop losses? 

Eliciting losses directly from farmers may be unbureaucratic and easily scalable, however, the 

previous analysis has indicated that it comes with a number of potential drawbacks. In order to 

better assess the accuracy of farmers’ self-reports, there is a need to understand the way in which 

farmers form their estimates and compare them to a credible benchmark or ‘gold standard’. For 

example, methodological research comparing self-reports to an objective measure uncovered 

systematic measurement error in farmers’ reports of plot size and harvest quantity (Carletto, 

Savastano and Zezza, 2013; Carletto, Gourlay and Winters, 2015; Gourlay, Kilic and Lobell, 

2019). Using data from the Uganda MAPS experiment, we can compare farmers’ loss reports to 
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losses as assessed by the enumerator/crop cutter and gain insights into potential heuristics used by 

farmers to form their estimates. 

In the Uganda MAPS experiment, two questions, one covering losses on the extensive margin 

and another one the intensive margin, are answered by both the enumerator (at the crop cut visit) 

and the farmer (at the post-harvest visit). 

• Extensive margin losses: Was there any damage to the maize crop prior to harvest? 

• Intensive margin losses: What percentage of the potential maize harvest was lost due to 

damage on [PLOT]? 

We can therefore compare the answers farmers give to each of the questions to those of the 

enumerator (the “expert”) and verify their alignment. Good alignment may speak in favor of the 

accuracy of self-reports and increase our confidence in the ability of enumerator reports to serve 

as a ‘gold standard’. 

 

What do we see in the data? 

On average, we find evidence for systematic overreporting of losses by farmers compared to 

enumerators both on the extensive and intensive margin. Both farmers (95 percent of plots) and 

experts (89 percent), overwhelmingly report that there was at least some damage on the plot 

suggesting that crop losses in the MAPS sample are the norm. While agreement on the extensive 

margin is good with no statistically significant difference between farmer and expert reports, 

farmers report significantly higher losses when moving to the intensive margin, that is, in terms of 

the percentage of crop lost per plot. On average, enumerators/experts report losses to be at 21 

percent compared to 34 percent when asking farmers (Figure 3). 

 

Figure 3: Expert-assessed damage compared to farmer reports 
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Next, we run simple bivariate regressions of expert reports on farmers’ reports to assess their 

correlation. Table 5 finds farmers’ reports to be statistically significantly associated with 

enumerators’ assessments. Agreement, however, is imperfect and the R2 particularly low for 

whether there was any damage. The fit is somewhat better on the intensive margin, yet Figure 4 

illustrates that we observe quite a few cases in the data where farmers report a high loss but 

enumerators barely any loss. This is surprising as such discrepancies lie outside any reasonable 

boundaries for the expectable margin of error when comparing the assessment of two different 

people (the farmer and the enumerator). A tentative explanation of this phenomenon may relate 

the discrepancy to difficulties in adequately handling the percentage scale (see discussion in 

Question 1), likely by farmers since the enumerator should have more routine in conducting such 

assessments. At the same time, large discrepancies in the assessment of losses may also drive the 

low observed fit on the extensive margin. In cases where enumerators do not report any loss but 

farmers do, farmer-reported losses are not marginal in size but rather cluster between 10 percent 

and 40 percent. This may point to a heuristic consistent with satisficing in which farmers simply 

report a number that appears reasonable if they are uncertain.   

 

To further investigate what may explain the differences in the size of reported losses, we regress 

the log-ratio and absolute difference in farmers’ and enumerators’ reports on a number of potential 

drivers (Annex Table A 3). We do not find any significant factors relating to plot or plot manager 

characteristics. Notably, there does not seem to be a relationship between farmers’ education and 

the agreement with expert assessments. However, over half of respondents in the MAPS sample 

have completed five or more years of education, making them better educated than farmers in the 

Ethiopia or Malawi sample. 

On the other hand, it seems that when damage occurred due to drought (based on farmers’ self-

reports), farmers’ overestimation is more pronounced. This may be due to drought being a “slow-

onset disaster” whose salience depends greatly on its intensity and may be subject to differences 

in perception. What enumerators classify as a drought may thus differ from farmers’ perceptions, 

especially since the former likely are basing their assessment on comparisons with other farms 

Bivariate regressions of expert assessed damage on farmer assessment
(1) (2)

VARIABLES

Damage on plot (Y/N), farmer assessment 0.270*

(0.147)

Farmer assessment 0.461***

(0.0690)

Constant 0.636*** 4.544**

(0.146) (1.933)

Observations 213 213

Adjusted R-squared 0.032 0.276
Note: The table shows a bivariate regression (linear probability model) of expert assessments of 

whether there was any damage on the plot based on farmer assessments (Column 1) and expert 

assessments of the percentage amount of damage on the crop on farmer assessed values. 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Expert assessment

Table 5: Regression of expert-assessed on farmer-assessed 
damage. 

Figure 4: Percent of damage on the plot, expert 
vs. farmer. 
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surveyed. Importantly, earth observation data suggest that 2016, the year the MAPS data was 

collected, was a drought year (FAO, no date). The data may thus reflect a similar situation as in 

2015 in Ethiopia where self-reported losses where conspicuously high compared to average yields 

and suggest that in drought years we observe an “overreaction” in farmers’ reports. 

  

What do we conclude and still need to know? 

While farmer reports and expert assessments show some overlap, they do not match very well and 

display some striking discrepancies that are not explainable by small differences that would be 

expected in the appraisal process. This may serve as further suggestive evidence that while eliciting 

losses on a percent scale gives a decent ordinal proxy in most cases, forming an exact point 

estimate is cognitively challenging, may lead to satisficing behavior, and is thus prone to error. 

This seems to be exacerbated in drought years where farmers’ reports are particularly high. At the 

same time, we cannot ascertain the accuracy of enumerator reports with confidence either as 

enumerators may err just as well when it comes to losses at the extensive and intensive margins. 

This makes it hard to proclaim enumerator assessments a credible ‘gold standard’. In order to better 

understand the accuracy in farmers’ self-reported losses, finding a dependable, “objective” 

measure of losses is thus still an open question for future methodological research. 

 

Question 3: Can data from past harvests or unaffected plots serve as a suitable benchmark for 

attainable harvest? 

The FAO methodology heavily relies on the ability to obtain an accurate estimate of the attainable 

yield. For this, it suggests drawing on past harvest data to calculate the multi-year trend (or 

average) of realized yields as an indication of in-season attainable yields (Conforti, Markova and 

Tochkov, 2020). Alternatively, using same-season realized yields from plots unaffected by any 

disaster, for example average yields from an agriculturally comparable district, would be a 

possibility (FAO, 2020). 

Simplifying Equation (1) from the framework in Section 3 and using that  

𝑦𝑖,𝑗,𝑡
𝑟 =

𝑌𝑖,𝑗,𝑡
𝑟

ℎ𝑎𝑖,𝑗,𝑡
𝑟 ,  

we can write 

𝐿𝑖,𝑗,𝑡 = 𝑝𝑖,𝑔,𝑡−1 (𝑓 (∑ 𝑦𝑖,𝑗,𝑡−𝑧
𝑟

𝑛

𝑧=1
) ℎ𝑎𝑖,𝑗,𝑡

𝑐 − 𝑌𝑖,𝑗,𝑡
𝑟 ) + 𝛾 (3) 

where the counterfactual yield yc is a function of past yield realizations or 
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𝑐 − 𝑌𝑖,𝑗,𝑡
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where yc has been replaced by a function of the realized yields on other plots that share similar 

characteristics to the plot in question but did not incur any losses.32 Multiplying this by the planted 

area hac thus gives the attainable production. Losses then constitute a deviation of the realized 

harvest Yr from what would have been expected based on past years or the performance of yields 

on plots in unaffected areas, respectively. 

The remainder of this section looks at the data requirements of both approaches as well as their 

likely accuracy. 

 

What do we see in the data? 

We start by regarding the suitability of using past yield data to proxy for attainable yields from a 

data availability perspective. In order to ascertain a robust trend or average in yields, we require 

high frequency (e.g. annual) panel data reaching back several years. Micro-level panels of this 

frequency are exceedingly rare and, in our case, the LSMS-ISA panel data only cover recurring 

survey rounds every two to three years. While such high frequency data is currently unavailable at 

a sufficiently disaggregated level33 it may become available in the future.34 

Another challenge in this regard relates to split-off households and those that move. The LSMS-

ISA survey in both Ethiopia and Malawi tracks households that move to a new place whereas the 

latter also tracks households that split from the originally sampled household. For both groups of 

households, comparable past information on yields would be missing.35 

Irrespective of this, yields in the context of the LSMS-ISA data are measured at the plot level. 

Ideally, the panel data used would thus also be identified at the plot-crop level in order to hold 

differences in soil quality and other plot characteristics constant. However, plot boundaries and 

crop choice frequently vary across years and the LSMS-ISA data are thus household-level (and in 

the case of Malawi and Ethiopia parcel-level) panels but not necessarily plot-level panels (Carletto, 

Gourlay and Winters, 2015). As a result, it would likely be necessary to move to farm-level 

aggregate yields in order to reduce the idiosyncratic uncertainty associated with varying plot 

management decisions and growing conditions. 

More fundamental than these concerns on data requirements is a conceptual issue with relying on 

past yield data. By definition, we only observe past yield realizations which will differ from 

attainable harvest in the presence of crop losses. In Ethiopia and Malawi, however, harvest losses 

are very common affecting, for instance, between 55 percent and 65 percent of maize plots across 

years in Malawi and between 41 and 56 percent of maize plots in Ethiopia. As such, any past 

 
32 As a reminder, Yr and hac are always observed in the LSMS-ISA data. They are the realized production and GPS 

measured area, respectively. 
33 Data sources such as FAOSTAT’s yield database, for example, contain yearly data but cover the country-level 

which may be too coarse to accurately accommodate sub-national, sub sub-national, or even micro-level variation. 
34 Projects such as the 50x2030 initiative are planning on collecting agricultural statistics in recurring patterns 

including a core of agricultural data at yearly frequency (50x2030 Initiative, 2020). 
35 Between the first and third round of the Integrated Household Panel Survey (IHPS) in Malawi, for example, 

almost 40 percent of households moved to a different location. 
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harvest data is likely to provide a downward-biased estimate of the attainable harvest and carry 

over the effect of past shocks into the current-season losses estimate.36 

A possible remedy for this would be to use the maximum achieved yield in the past in the hopes 

that the same farmer (the same farm) has gotten at least close to the attainable yield before. 

However, there is no guarantee this has been the case and the method may simply pick up outliers 

due to measurement error. Furthermore, this would only be a suitable option if all other potentially 

confounding factors such as input intensities would be somewhat similar across rounds and thus 

the only remaining difference is constituted by the existence of exogenous shocks (or absence 

thereof). However, the literature finds yields to vary substantially even within the same farm over 

time with differences in crop management playing an important role on top of idiosyncratic shocks 

(Ronner et al., 2018; Silva et al., 2018; van Loon et al., 2019). 

Alternatively, one could consider (average) realized yields in agriculturally comparable districts 

known to have been unaffected by large scale disasters as a proxy for attainable yields in disaster-

affected districts. Similar to the use of past yield data, the accuracy of this method crucially 

depends on the degree to which factors other than disaster impact are constant between disaster-

affected and the “control” plots. This may not be the case as the literature suggests the presence of 

large inter-farm differences in yields due to idiosyncratic shocks but notably also measurement 

error, varying input intensities, and soil quality (Gollin and Udry, 2021). This is furthermore 

 
36 Naturally, this is of particular concern when the time dimension of the panel data is small as is the case with most 

current agricultural household survey data. 

 

Figure 5: Ethiopia: Intra-farm yield variability based on self-reports and crop cuts. 
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highlighted in the data by comparing yields across different plots of the same farm. Comparing 

plots of the same farm should hold many of the aforementioned factors constant. However, as 

Figure 5 emphasizes, there is considerable heterogeneity in yields even within the same farm and 

even when only regarding pure-stand plots without losses or comparing crop cut yields on plots 

without losses. 

  

What do we conclude and still need to know? 

These considerations highlight the difficulties in finding a valid counterfactual based solely on 

realized yields, either exploiting the time or cross-sectional dimension of survey data. Using past 

harvest observations as a proxy for current season attainable harvest requires panel data of higher 

frequency than is common in current agricultural surveys and would not capture any households 

that have changed location or entered the panel. Fundamentally though, they would provide an 

estimate of attainable harvest that is downward biased to the degree that shocks have also occurred 

in previous survey rounds, a likely scenario based on our sample, and be prone to bias from inter-

temporal differences in plot management decisions. Furthermore, the large inter-farm variability 

in yields due to factors other than shocks that is reported in the literature and heterogeneity in 

yields across plots of the same farm in our data cast doubt on the suitability of using realized yields 

from other farms to proxy for the attainable harvest. 

However, using rich survey data as is provided by the LSMS-ISA, it may be possible to account 

for possible confounding factors and predict (attainable) yields using econometric or machine 

learning models based on past yield data, data from several similar but unaffected plots, and/or 

planting season crop management decisions. An exploration of this possibility is beyond the scope 

of this paper but may be a relevant avenue for future research.  

 

Question 5: Can farmers’ post-planting harvest expectations proxy for attainable harvest? 

As previously discussed, the LSMS-ISA data contains detailed information on plot, input, and 

management characteristics as well as agricultural production down to the plot-crop level. This is 

an important feature as accounting for these differences acknowledges the fact that yields can vary 

greatly between different plots. For example, different field characteristics and management 

practices can create variation not only in the realized yield but also the attainable yield. 

Furthermore, taking Ethiopia as an example, between 35 percent and 44 percent of plots 

(depending on survey round and crop) are intercropped. This means that we may not have accurate 

information on the actual share of the plot that was planted with the crop and thus the attainable 

production (in absolute terms).37 

To potentially address these pitfalls, we can rely on farmers’ ability to somewhat accurately 

estimate the attainable harvest for each crop on each plot at the post-planting visit. At this point, 

 
37 The LSMS-ISA data does contain a question that asks for the share of the plot that was planted with the crop for 

mixed stand plots. However, the estimate is rather coarse (less than a quarter, 50 percent, 75 percent, more than 75 

percent). 
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the majority of crop management, plot preparation, and other input decisions should have been 

taken. Asking farmers for their expected harvest38 may thus give an estimate that takes into account 

between-plot heterogeneity in the aforementioned factors. We could then define a loss as an 

“expectation gap”, the (positive) difference between expected and realized production.39 

Simplifying the general form of the loss equation in (1) (and dropping subscripts for simplicity) 

we can thus write 

𝐿𝑖,𝑗,𝑡 = 𝑝𝑖,𝑔,𝑡−1(𝑦𝑐ℎ𝑎𝑐 − 𝑦𝑟ℎ𝑎𝑟) + 𝛾 (5) 

where the first term in parentheses is the expected production taken from farmers’ reports at the 

post-planting visit and the second term is realized production taken from their reports at the post-

harvest visit. 

Naturally, using farmers’ post-planting harvest expectations is not without its challenges and 

drawbacks either. Most importantly, farmers’ expectations are endogenous to past shock 

experience and future shock expectations as discussed in Section 2. For example, farmers may 

adjust expectations according to the amount of information (e.g. accurate weather forecasts) they 

have (Rosenzweig and Udry, 2019) or in light of recent shock exposure (Karlan et al., 2014). 

Inevitably, this will contaminate the expected harvest as an unbiased estimate of the attainable 

harvest without shocks. Another fundamental question is whether expectations are consistent with 

actual behavior, i.e. whether they accurately relate to the plot management decisions that determine 

the attainable harvest. Furthermore, farmers’ expectations may also not capture any losses that 

already occurred during the planting season and before they were surveyed or suffer from 

downward bias as a result.40 Lastly, the difference between expected and realized harvest may be 

too coarse an estimate of crop losses at the micro-level and for small losses.41 

In assessing the suitability of proxying for the attainable harvest through farmers’ expectations, 

we will pursue a number of questions. 

 
38 In both countries (with small variations) farmers are asked: “How much of [CROP] do you expect to harvest 

during the [MAIN AG SEASON]?” 
39 Naturally, there is a possibility that realized harvest will exceed expectations. For the sake of this analysis, we 

have to interpret these instances as cases where no losses happened. This may not necessarily be true for small 

losses; however, it is conceivable that the proxy at least captures substantial losses. 
40 For instance, it is conceivable that a disaster, particularly one that hits suddenly such as a storm, may have 

occurred during the planting season. This may create a situation in which re-planting is necessary, but farmers 

manage on time for the growing season so that those losses are not reflected in farmers expectations (such “hidden” 

planting season losses are of course a potential source of bias in all approaches discussed in this paper). 

Alternatively, farmers may choose to not perform any post-disaster management on the plot resulting in their 

expected production being low. In this case, farmers’ expectations will lead to downward biased estimates of the 

attainable harvest (and thus disaster crop losses) since they are endogenous to planting season shocks. We drop 

those cases where farmers do not expect to harvest anything and do not end up harvesting anything, interpreting 

these cases as planting season full losses that the methodology in Question 4 cannot account for. 
41 For example, crops that perform unexpectedly well can, by this definition, not record a loss if realized harvest 

outperformed expected harvest. However, one could easily imagine a crop performing very well in a given year and 

still recording some minor damage. Similarly, the unavoidable measurement error associated with using farmers’ 

self-reported expectations (in a unit of their choosing) and taking any positive deviations from realized yield as an 

estimate of the loss may make the measure too coarse to accurately capture small losses. Conversely, substantial 

losses as do matter for aggregate measurement of losses and policy should likely be captured by the proxy. 
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• Do expectations regularly exceed harvest realizations and does an overestimation 

coincide with the occurrence of a loss? 

• Are expectations aligned with the actual management decisions (e.g. input intensities) 

made on the plot that determine the harvest that is attainable? 

• Is the size of the (positive) expectation gap a reasonable estimate of the quantity lost? 

• How are expectations formed? 

 

What do we see in the data 

Figure 6 plots the mean expected and realized crop production and yield by country and survey 

round. There is indicative evidence for systematic over-expectation of harvest if both expectation 

and realization are based on farmers’ self-reports. However, large confidence intervals mean that 

oftentimes we cannot reject the null hypothesis that the means are equal. Further, if we split the 

sample between plots with and without losses (based on self-reports), realized and expected yields 

are higher for those plots with no losses suggesting that part of the loss is already anticipated at 

the post-planting visit.42 There is also a tendency for expectation gaps, the difference between the 

 
42 We can take further evidence for the adjustment of expectations based on damage that has already occurred at the 

post-planting visit by fitting a local polynomial of harvest expectations against self-reported crop damage at the 

 

 Figure 6: Mean realized vs. expected harvest. 
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mean harvest expectation and mean realized harvest, to be larger where there was at least some 

loss. These observations provide suggestive evidence of an association between over-expectation 

and loss occurrence. 

Taking an over-expectation as an indication of a loss, between 49 percent (ESS15, maize) and 57 

percent (ESS18, maize) of plots record a loss. Notably, this also results in less variation between 

crops and there is no clear pattern of alignment between the loss incidence based on planted area 

and/or plant productivity losses and based on harvest expectations exceeding realizations (Table 

6).43 

For post-planting expectations to provide a realistic proxy of the attainable harvest, they need to 

be aligned with the actual management decisions on the plot.44 Table A 4 and Table A 5 ascertain 

this through two equivalent yield regressions for each survey round and crop: one using realized 

harvest as the outcome variable and one using harvest expectations. They generally confirm that 

the alignment of expectations with production factors, based on the model’s R2, is generally 

equally good or better than for realized harvest. This increases confidence in farmers’ 

expectations’ alignment with their reported behavior. However, some notable exceptions in 

Ethiopia (ESS15 across both crops) and Malawi (IHPS10) exist. 

 
post-planting visit (not reported). This, again, suggests that some of the loss already occurred before expectations 

were elicited which will likely bias them downward. 
43 For cross-country, longitudinal figures on crop and livestock losses in urban vs. rural areas see (Chaudhary, 2021). 
44 This is because farmers’ input use and management practices place an effective upper boundary on the harvest 

that can be achieved. If farmers thus declare one thing as their harvest expectation but their input use is inconsistent 

with this, the relationship between post-planting expectation and realized harvest is distorted by factors other than 

shocks, rendering them an unsuitable proxy for the attainable harvest. 

Country Crop Round Area Damage Area or damage Overexpectation

ESS13 12.7% 40.9% 41.4%

ESS15 19.4% 55.7% 56.2% 48.7%

ESS18 17.1% 43.3% 45.3% 56.5%

ESS13 21.2% 45.9% 46.7%

ESS15 33.8% 74.5% 75.0% 49.8%

ESS18 25.5% 53.3% 54.8% 53.3%

IHPS10 56.5% 36.3%

IHPS13 55.1% 44.6%

IHPS16 65.3% 60.0%

IHPS19 61.0% 51.8%

Note: Crop loss incidences (percent) according to different proxies, by survey round and crop: area harvested < area 

planted (area loss), damage on the crop (damage), any area or damage-related loss, or expected production < realized 

production (overexpectation). ESS = Ethiopia Socioeconomic Survey, IHPS = Integrated Household Panel Survey.

Percent of plots with crop losses based on..

Ethiopia

Malawi

Maize

Sorghum

Maize

Table 6: Loss incidence across different proxies. 



 

30 
 

Table 7: Ethiopia - Regressions of self-reported harvest realizations on expected harvest and a 
range of controls. 

Table 7 and Table 8 explore the alignment of expectations with harvest realizations by regressing 

realized harvest on expected harvest, first in a bivariate regression and later including a full set of 

controls. Expectations prove a significant predictor of self-reported realized harvest with the 

association much stronger in Malawi. Furthermore, consistent with the notion of systematic over-

expectation, coefficients are positive but less than one. Adding the planted area- and plant 

productivity loss measures as additional covariates to the model, we gain some but not much 

explanatory power with the coefficients carrying the expected signs.45 This again indicates that the 

two measures (one in Malawi) are associated with losses but do not provide exact point estimates. 

 
45 We verify this result graphically by comparing the mean (positive) expectation gap to the mean estimated loss 

from Question 1 by country, crop, and survey round and by plotting the expectation gap against the two different 

losses measures (area and plant productivity losses in percent), respectively. Alignment is imperfect and the general 

pattern consistent with the finding of Sohnesen (2020) that farmers’ shock (loss) reports and realized yields (and 

thus the expectation gap) tell two different stories. 

Ethiopia - Yield         

  (1) (2) (3) (4) (5) (6) (7) (8) 

 ESS15 ESS18 

VARIABLES Maize yield (kg/ha) Sorghum yield (kg/ha) Maize yield (kg/ha) Sorghum yield (kg/ha) 

                  

Expected maize yield (kg/ha) 0.183*** 0.126***    0.0997** 0.0652**    

 (0.0416) (0.0349)    (0.0460) (0.0330)    
Expected sorghum yield (kg/ha)   0.256*** 0.124***    0.290** 0.197* 

   (0.0387) (0.0324)    (0.113) (0.107) 

Planted area harvested (%)  10.30***   3.926**   8.554***   10.69** 

  (2.943)   (1.732)   (2.776)   (4.853) 

Damage on crop (%)  -8.277***   -11.99***   -8.818***   -6.854 

  (3.137)   (1.810)   (2.813)   (5.473) 

Constant 1,640*** 1,587 837.0*** 1,902*** 1,465*** -447.6 1,246*** 2,846 

 (109.0) (1,021) (82.59) (558.4) (102.1) (1,013) (270.3) (3,272) 

            
Observations 2,928 2,841 2,397 2,336 1,685 1,629 1,302 1,240 

Adjusted R-squared 0.086 0.217 0.171 0.341 0.044 0.199 0.083 0.223 

Controls NO YES NO YES NO YES NO YES 

Note: Regression of self-reported realized yield on expected yield, planted area and plant productivity loss, and a number of plot-, 
manager-, and household controls as well as inputs and zone fixed effects. Controls: Inputs - Plot area, total labor p. ha, any hired labor 
dummy, seed quantity p. ha, improved variety dummy, inorganic fertilizer quantity p. ha, any organic fertilizer dummy; Household - 
dependency ratio, any HH member has primary education dummy, agricultural asset index; Manager - female dummy, age, primary 
education dummy; Plot - intercropped dummy, precipitation of wettest month, soil fertility index; Zone fixed effects. Clustered 
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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They therefore do not explain much of the remaining variance when already controlling for the 

attainable harvest through expectations.46
 

Table 8: Malawi - Regressions of self-reported harvest realizations on expected harvest and a 
range of controls. 

Malawi - Maize Yield         

  (1) (2) (3) (4) (5) (6) (7) (8) 

 IHPS19 IHPS16 IHPS13 IHPS10 

VARIABLES Bivariate Multiv. Bivariate Multiv. Bivariate Multiv. Bivariate Multiv. 

                  

Expected maize yield (kg/ha) 0.388*** 0.214** 0.536*** 0.398*** 0.687*** 0.315*** 0.136*** 0.0618*** 

 (0.0768) (0.0826) (0.0546) (0.0472) (0.0883) (0.0991) (0.0239) (0.0196) 

Planted maize area harvested (%)  6.385***          

  (1.642)          
Constant 784.3*** 783.3 359.7*** -1,836 894.4*** 10,025 1,252*** 3,271*** 

 (115.0) (1,684) (70.56) (1,344) (264.2) (7,343) (86.41) (934.1) 

            
Observations 568 544 493 490 442 442 842 842 

Adjusted R-squared 0.373 0.509 0.385 0.448 0.468 0.556 0.090 0.333 

Controls NO YES NO YES NO YES NO YES 

Note: Regression of self-reported realized maize yield on expected maize yield, planted area loss (only IHPS19), and a number of plot-
, manager-, and household controls as well as inputs and district fixed effects. Controls: Inputs - Plot area, total labor p. ha, any hired 
labor dummy, seed quantity p. ha, improved variety dummy (only IHPS19 and IHPS15), inorganic fertilizer quantity p. ha, any organic 
fertilizer dummy; Household - dependency ratio, head employed for wage dummy, any HH member owns non-ag enterprise dummy, 
any HH member has primary education dummy, agricultural asset index; Manager - female dummy, age, primary education dummy; 
Plot - intercropped dummy, precipitation of wettest month, soil fertility index; Zone fixed effects. Clustered standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

As a final exercise, Table 9 and Table 10 investigate the factors that underlie farmers’ expectation 

building. Neither a set of respondent characteristics nor past shock exposure or other factors 

potentially associated with the process of forming an expected harvest estimate are significant 

predictors of the expectation gap across crops and countries.47  We gain some explanatory power 

by constraining the sample to those plots where expectations exceeded realized harvest, i.e. those 

 
46 In Ethiopia, we also have data from crop cut harvests for a sub-sample of plots. This allows us to verify whether 

expectations are also strong predictors of what is commonly taken as the “gold standard” measure of realized 

harvest. We find that expectations do not seem to be a reliable predictor for crop cut harvest, and in particular crop 

cut yields. Furthermore, this does not seem to be due to bias only inherent in self-reported expectations as there is 

only a slightly stronger association even between self-reported harvest realizations and the crop cut measure. We 

thus conclude that expectations only provide a fair proxy of the attainable harvest when also using self-reported 

harvest realizations. The reason for this is likely that both share a similar underlying mental model and thus similar 

biases that cancel out when comparing them. 
47 The fact that we do not find a robust effect of past shock exposure, measured either by community reports for the 

past two years, on expectation building is somewhat surprising as there is strong evidence in the literature that past 

shock exposure affects risk attitudes and expectations about the likelihood of future shocks. This may be because the 

shock proxies used are not specific enough, i.e. they do not necessarily measure adverse experiences with past 

agricultural shocks and may not capture individual exposure. 
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where we hypothesized that some crop may have been lost. However, the adjusted R2 remains low 

throughout. This is not unsurprising since there are likely complex behavioral processes underlying 

farmers’ expectation building that are hard to model in this simple framework and without a 

(quasi)-experimental set-up. Notably, adding the percent-based planted area loss and plant 

productivity reduction estimates (not reported) adds a significant amount of predictive power to 

the model, however, this is driven by plots with full losses where the association is mechanical. 

Table 9: Ethiopia - Drivers of over-expectation 

 

 

(1) (2) (3) (4) (5) (6) (7) (8)

Base Overexp. Base Overexp. Base Overexp. Base Overexp.

Community reported drought in last 2y 0.351 0.504 -0.105 -0.0268 0.770*** 0.421 0.0277 0.231

(0.287) (0.338) (0.127) (0.151) (0.220) (0.306) (0.124) (0.140)

Community reported flood in last 2y 0.0318 0.0832 -0.0828 -0.331* 0.362 0.395* -0.422* -0.382*

(0.272) (0.268) (0.168) (0.181) (0.296) (0.209) (0.242) (0.225)

Community reported crop disease in last 2y 0.0349 -0.181 -0.0892 -0.112 -0.292 -0.111 0.0540 0.266

(0.182) (0.202) (0.103) (0.113) (0.204) (0.252) (0.152) (0.215)

log Plot area (ha) -0.122** -0.219*** 0.0356 -0.0374 -0.0198 -0.106** 0.0369 0.0531

(0.0475) (0.0512) (0.0292) (0.0295) (0.0377) (0.0501) (0.0450) (0.0470)

Intercropped 0.178 0.228 -0.0526 0.0812 -0.0490 -0.0437 -0.227** -0.188

(0.142) (0.163) (0.0835) (0.0959) (0.104) (0.129) (0.109) (0.120)

Soil fertility index -0.111 -0.224** -0.0514 -0.0325 -0.00537 -0.128 -0.00517 0.0126

(0.0870) (0.108) (0.0515) (0.0557) (0.117) (0.195) (0.0781) (0.0906)

Improved seed 0.489*** 0.558*** -0.144* -0.183* 0.366** -0.0551 0.644 0.870

(0.168) (0.199) (0.0863) (0.105) (0.171) (0.185) (0.485) (0.649)

Precipitation of Wettest Month (mm) -0.00225** -0.00289** -0.00320*** -0.00430*** 0.00192 0.00409 -0.000423 -0.00209

(0.00103) (0.00135) (0.000954) (0.00120) (0.00360) (0.00639) (0.00162) (0.00210)

Dependency ratio -0.130*** -0.119** 0.0187 -0.00715 0.0216 -0.0180 0.0766* 0.0882

(0.0490) (0.0517) (0.0302) (0.0422) (0.0409) (0.0585) (0.0445) (0.0678)

Any HH member has primary edu -0.123 -0.164 0.0325 -0.0300 -0.0504 -0.0477 0.122 0.107

(0.0995) (0.139) (0.0747) (0.107) (0.101) (0.108) (0.0928) (0.126)

Ag Asset Index 0.205*** 0.149* -0.127* -0.186** -0.0152 -0.0494 -0.101 -0.179*

(0.0672) (0.0817) (0.0664) (0.0875) (0.0745) (0.103) (0.0801) (0.103)

Female plot manager -0.0700 -0.131 0.000363 -0.121 -0.109 -0.0539 0.0643 -0.0608

(0.122) (0.144) (0.0830) (0.115) (0.0897) (0.141) (0.148) (0.195)

Plot manager age -0.00692** 0.00210 -0.00121 0.00205 0.00454 0.00394 -0.00163 -0.00208

(0.00313) (0.00378) (0.00270) (0.00338) (0.00310) (0.00312) (0.00298) (0.00368)

Plot manager has primary edu 0.0691 0.225* -0.0506 -0.000532 0.122 0.125 -0.0871 0.0557

(0.0992) (0.131) (0.0989) (0.119) (0.134) (0.157) (0.126) (0.157)

Constant 0.853** 1.200** 1.210*** 2.087*** -0.609 -0.424 -0.0174 1.322**

(0.395) (0.475) (0.325) (0.407) (0.838) (1.417) (0.443) (0.556)

Observations 1,631 930 2,848 1,379 1,247 659 2,347 1,163

Adjusted R-squared 0.080 0.122 0.062 0.134 0.084 0.122 0.084 0.129

Region FE YES YES YES YES YES YES YES YES

Note: Regressions of the log of the ratio of expectations (+1) to realizations (+1) on a number of potential correlates. Clustered standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Ethiopia
Maize Sorghum

ESS18 ESS15 ESS18 ESS15
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Table 10: Malawi – Drivers of over-expectation 

 

What do we conclude and still need to know? 

From our analysis, farmers’ self-reported harvest expectations generally prove fair, albeit likely 

endogenous, proxies of the attainable harvest. Expectations align relatively well with harvest 

realizations as long as both rely on the same underlying “mental model” (are both self-reports) and 

therefore likely share the same biases. We find limited evidence for an association between over-

expectation and loss occurrence when comparing direct measures of losses (planted area and plant 

productivity losses) to the gap between expected and realized harvest. Consequently, there remains 

a sizeable “black box” of (behavioral) factors explaining farmers’ expectation building and thus 

driving the expectation gap. Here, further research drawing on a (quasi-) experimental set-up is 

(1) (2) (3) (4) (5) (6) (7) (8)

Base Overexp. Base Overexp. Base Overexp. Base Overexp.

Community reported drought in last 2y -0.169 0.0694 -0.237 -0.472 -0.103 0.273 -0.211 -0.315**

(0.298) (0.151) (0.384) (0.471) (0.154) (0.188) (0.184) (0.143)

Community reported flood in last 2y -0.272 -0.133 1.515*** 0.952* -0.136 1.058 -0.184 0.170

(0.265) (0.115) (0.426) (0.514) (0.643) (0.698) (0.262) (0.179)

log Plot area (ha) 0.363 0.0870 0.432 0.443 -0.0356 -0.316** -2.174*** -0.591

(0.422) (0.582) (0.375) (0.649) (0.267) (0.145) (0.429) (0.398)

Intercropped -0.0330 -0.159 -0.0593 -0.435 0.105 -0.0713 0.241 0.437**

(0.139) (0.193) (0.233) (0.273) (0.123) (0.107) (0.230) (0.208)

Soil fertility index -0.101 -0.165** -0.185 -0.0698 -0.0719 0.00453 -0.0278 0.145**

(0.0996) (0.0640) (0.277) (0.289) (0.136) (0.158) (0.103) (0.0685)

Precipitation of Wettest Month (mm) -0.00365 -0.000472 0.000458 0.00362 0.00392 -0.00251 0.00436 0.00668

(0.00651) (0.00457) (0.0100) (0.0116) (0.00862) (0.00565) (0.00561) (0.00538)

Plot has improved maize variety 0.0298 -0.0248 0.0311 -0.123

(0.123) (0.146) (0.205) (0.247)

Dependency Ratio 0.0360 -0.000936 0.0601 0.0347 0.0231 -0.0943 0.0685 0.0155

(0.118) (0.104) (0.116) (0.143) (0.0756) (0.0952) (0.0764) (0.0673)

Any HH member has primary edu 0.265* 0.204 0.180 0.441* 0.111 -0.226 0.0150 -0.0541

(0.132) (0.143) (0.327) (0.261) (0.119) (0.175) (0.175) (0.168)

Ag Asset Index -0.324 -0.443 -1.757** -1.686*** -0.0168 0.192 -1.134*** -0.748*

(0.330) (0.276) (0.670) (0.622) (0.251) (0.259) (0.338) (0.395)

HH wealth index -0.753* -0.378 0.0155 0.696 -0.495 -0.712* -0.641* -0.848*

(0.443) (0.351) (1.055) (1.012) (0.357) (0.363) (0.367) (0.471)

HH head has wage employment -0.0261 -0.0727 0.149 -0.241 0.255 0.361* -0.132 0.0977

(0.172) (0.192) (0.416) (0.368) (0.164) (0.187) (0.150) (0.130)

HH member owns non-ag enterprise 0.231 0.102 0.234 0.218 -0.156 -0.0367 -0.161 -0.187

(0.176) (0.125) (0.241) (0.263) (0.115) (0.159) (0.175) (0.140)

Female plot manager 0.103 -0.152 -0.0189 0.197 -0.0552 0.0582 -0.162 0.0647

(0.102) (0.116) (0.226) (0.314) (0.120) (0.120) (0.129) (0.120)

Plot manager age -0.000786 -0.00153 0.00427 0.00146 0.000357 0.00523 0.00129 0.00765

(0.00430) (0.00404) (0.00774) (0.00981) (0.00443) (0.00315) (0.00372) (0.00481)

Manager has primary education -0.110 -0.000140 -0.0524 -0.346 -0.169 -0.0710 -0.0150 0.241

(0.179) (0.167) (0.216) (0.290) (0.114) (0.102) (0.189) (0.149)

Constant 0.990 0.888 0.151 0.132 -1.001 1.086 -0.524 -1.195

(1.570) (1.196) (2.905) (3.234) (2.130) (1.384) (1.471) (1.513)

Observations 568 296 493 297 442 199 842 306

Adjusted R-squared 0.029 0.078 0.088 0.242 -0.001 0.078 0.150 0.498

District FE YES YES YES YES YES YES YES YES

Note: Regressions of the log of the ratio of expectations (+1) to realizations (+1) on a number of potential correlates. Clustered standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1.

IHPS19 IHPS16 IHPS13 IHPS10Malawi (maize)
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needed to better understand the factors that underlie this mental model and, possibly on top of 

losses, explain the accuracy of expectations and their suitability to proxy for the attainable harvest.  

We conclude that inferring losses from the difference between the expected and realized harvest 

is a coarse measure and may not be preferrable over more fine-grained approaches asking farmers 

for planted area and plant productivity losses directly. However, expectations may be better suited 

in the case of full losses (when the methodology from Question 1 is not applicable) or in general 

when capturing large losses is the primary goal. This is because the expectation gap is likely not 

sensitive enough to adequately represent small losses but provides a decent approximation of the 

attainable harvest when small biases matter less, e.g. after severe disasters. In future 

methodological research, trying to elicit farmers’ expectations even more accurately, for example 

by priming them to think about the attainable harvest without shocks, may furthermore decrease 

endogeneity in farmers’ expectations as proxies of the attainable harvest. Lastly, expectations 

perhaps may not serve as the sole proxy for the attainable harvest but could be an important feature 

for econometric models that try to predict (attainable) yields. 

 

4.2. Attribution: Linking losses to specific disasters 

Measuring crop losses due to disasters for SDG 1.5.2 and Sendai indicator C-2 crucially hinges on 

the accurate attribution of losses to specific shocks. Most commonly, survey data has relied on 

self-reports as a fine-grained but subjective measure of shock exposure. At the same time, 

technological advancements have increased the accuracy of remote-sensed approaches over the 

last years, potentially alleviating concerns about measurement error at the micro-level and 

providing an objective measure. Importantly, self-reported data on shocks and index-based data 

have frequently been found to be at odds with no clear verdict in favor of any one approach  (Meze-

Hausken, 2004; Sohnesen, 2020). For instance, survey data may give a better representation of 

idiosyncratic (highly localized) shocks whereas basing shock occurrence on an index may capture 

covariate shocks, particularly meteorological disasters, more consistently across farms. 

The most common disaster in our study region is drought with 82 percent of its impact in 

agriculture and accounting for the majority of disaster damages and losses in the sector (FAO, 

2018, 2021). This is confirmed by the LSMS-ISA data where adverse rainfalls, either too much or 

too little rain, constitute the most frequently reported reasons for crop losses. They are therefore 

the focus of this paper. Our assumption is that these shocks are likely covariate, i.e. they should 

affect all plots with the same crop within a reasonably small geographic aggregate. Exploring 

several possible survey-based proxies, the analysis in this section thus aims to ascertain the degree 

of idiosyncrasy in self-reported data on shock exposure and discern variation due to differences in 

perception from variation due to actual loss incurrence.48 

 

 
48 Farmers’ plot-level shock reports are conditional on having experienced a crop loss due to the shock in question. 

To reduce the risk that we are measuring differences in disaster risk reduction technology between plots rather than 

the consistency of shock identification, we focus on rainfed plots that constitute the overwhelming majority of our 

sample. 
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Question 5: How uniform is farmers’ self-reported shock identification of covariate shocks? 

In order to confidently attribute losses to disasters based on self-reports, it is necessary to know 

how reliable farmers’ shock identification is. If the main shocks in the data, adverse rainfalls, are 

really covariate, plots in vicinity should face the same shocks and self-reports should thus be 

relatively homogenous within small geographic aggregates. 

In the context of attributing losses to disasters, this papers’ primary interest is for farmers’ shock 

identification in the face of a shock, i.e. the consistency with which self-reports identify a shock if 

a shock actually occurred. In the absence of a clear, objective measure of shock exposure, the 

analysis cannot compare self-reports to a “true value” but will rather study their internal 

consistency in “grey zone” cases where we cannot confidently rule out the possibility that a certain 

shock occurred. The analysis therefore excludes cases where a specific shock, for example a 

drought, was not identified on a single plot within the respective geographic unit of analysis (for 

example the village-level). This allows to focus on cases where it is conceivable that a shock 

occurred. 

We study the consistency of farmers’ shock reports at the farm- and enumeration area (EA-)level49 

based on several shock proxies. Specifically, four (three in Malawi) different questions in the 

LSMS-ISA data for self-reported shock identification, with some differences in shock definition 

and reporting periods, can be considered (Table 11). 

Table 11: Shock identification questions in LSMS-ISA data. 

Question Level of ident. Reporting period Answer options 

Q1: Why was the area 
harvested less than the area 
planted? 

Plot-crop level Current agr. season 

Up to two reasons  from a 
list including drought, 
irregular rains, insects, 
animals, floods (Malawi only) 

Q2: What was the main cause of 
the damage on [CROP]? 

Plot-crop level Current agr. season 
Main reason from a list 
including too little and too 
much rain 

Q3: During the last 12 months, 
was your household affected by 
[SHOCK]? 

Household level Last 12 months 
Yes/No response to a 
number of shocks including 
drought 

Q4: Please describe important 
events that have taken place in 
this community since two years 
ago including any events that 
have occurred this year. 

Community level 
(~ EA level) 

This year and past 
two years 

Up to four adverse events (if 
the same shock occurred 
multiple times, each time 
counts separately) 

 

Q1 and Q2 are asked for each crop on each plot that recorded a planted area loss or plant 

productivity loss, respectively. They are thus the most suitable questions for this paper as they are 

 
49 For sampling purposes, 10-12 agricultural households (rural areas in Ethiopia) or 16 households (baseline sample 

in Malawi) form an enumeration area. In both countries, the typical EA is roughly equivalent to the village or 

community. 
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asked at the most disaggregated level and specifically in relation to crop losses in the agricultural 

season of interest. At the same time, they come with the caveat that they cannot discern 

idiosyncrasy that is due to differences in famers’ perception from idiosyncrasy in shock reports 

due to actual differences in highly localized loss occurrence. The latter matters if there are 

differences in shock exposure between plots, for example because of differences in soil quality 

(Iizumi and Wagai, 2019) or the adoption of improved varieties of the same crop (Lombardi et al., 

2019). 

Furthermore, the LSMS-ISA data contains a question whether the household was negatively 

affected by a number of shocks, including drought, in the last 12 months (Q3). Lastly, the 

community module of the LSMS-ISA data features a question where a congregation of 

knowledgeable community members, roughly corresponding to the enumeration area, are asked 

about the four most significant adverse events in the last 3 years50 (Q4).51  

 

What do we see in the data? 

The most common shocks in this study’s region are rain-related (droughts, irregular/heavy rains, 

and floods) with some expected variation in incidence between the different proxies (Table A 8 

and Table A 9). On an ordinal scale though, they broadly agree and capture similar variation 

between years and crops. Most notably, proxies consistently identify a large-scale drought for the 

2015/16 harvesting season in Ethiopia as well as Malawi. Between the different proxies, the 

question on reasons for plant productivity reductions seems to pick up shocks most sensitively and 

leads to the highest incidences.52 

In the following, we study the consistency of shock identification at different levels of 

aggregation.53 At the farm level, if drought damage (Q2) is recorded on any plot, this is usually 

also the case on the remaining plots with the same crop (Table A 10). Particularly in 2015 when 

drought was most severe in Ethiopia, about eight in ten households with more than one maize plot 

and nine in ten households with more than one sorghum plot record drought damage on all plots 

planted with the crop (conditional on at least one plot identifying some drought damage). In 

 
50 Ethiopia uses a different calendar that does not align with the Gregorian calendar. “Years” thus roughly 

correspond to a time period from September to September. 
51 Household and community reports are what Sohnesen (2020) describes as “socio-economic” drought indicators, 

i.e. they may relate to a loss of consumption rather than necessarily an agricultural or meteorological drought. 

Compared to plot-level farmer reports, they have the drawback of not defining shocks in relation to a clear 

benchmark (e.g. a loss of production) which may cause farmers to define a drought differently and leaves room for 

endogeneity in responses (e.g. hardship is rationalized ex-post by reporting a drought) (Sohnesen, 2020). 
52 In Ethiopia, it is also notable that loss incidences are higher for sorghum than maize. Using GIS rainfall data for 

the past 12 months and comparing this to the 14-year average, it seems like this pattern is explained by sorghum 

being more frequently planted in regions prone to adverse rainfalls. 
53 Since only the data in Ethiopia contains all four shock proxy questions (most importantly the damage question 

which seems most sensitive) it is the focus of our discussion. However, the main conclusions presented are robust 

across both countries and for the use of different shock proxies than crop damage where applicable. In particular, 

this should also alleviate concerns that the differences in farmers’ shock identification we observe based on crop 

damage are because of a different prioritization of loss reasons across farms (farmers may only provide one reason 

for crop damage but two for area-based losses and the household-level question is asked for all households). 
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Malawi, where only information on planted area losses was elicited, drought identification is 

relatively homogenous within farms. Sample sizes are rather small though.54 

Table 12 confirms the importance of drought intensity for the uniformity of shock reports at the 

EA level through bivariate regressions. While there is a significant association between plot-level 

(Q1 or Q2) and community shock reports (Q4) across rounds, the explanatory power of this simple 

model is very low except, again, for ESS15 where drought was most intense.55 Conversely, in 

Malawi, the association between community and plot-level reports is significant in all rounds but 

IHPS16 but the R2 is low throughout. 

Table 12: Regressions of community-reported drought exposure on plot-level drought reports. 

  (1) (2) (3) (4) (5) (6) (7) 

 Ethiopia Malawi 

VARIABLES ESS18 ESS15 ESS13 IHPS19 IHPS16 IHPS13 IHPS10 

                

Drought damage 0.118** 0.572*** 0.237***      

 (0.0668) (0.0532) (0.0848)      

Drought area loss (maize) 0.209 0.0646 0.108 0.381*** 0.0364 0.185* 0.405*** 

 (0.129) (0.0675) (0.113) (0.144) (0.106) (0.108) (0.0901) 

Constant 0.0734*** 0.202*** 0.115*** 0.209*** 0.524*** 0.382*** 0.231*** 

 (0.0251) (0.0353) (0.0316) (0.0605) (0.0872) (0.0728) (0.0559) 

         
Observations 3,090 5,558 5,623 1,575 1,062 975 991 

R-squared 0.044 0.349 0.069 0.039 0.001 0.009 0.160 

Note: OLS regressions of community-reported drought exposure (last 2 calendar years) on plot-level crop loss reports due to 
drought. Ethiopia: Sorghum and maize plots. Malawi: Maize plots. Clustered standard errors in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. 

A drought is a slow-onset disaster with no objective benchmark (or “start point”) for the 

community congregation. Furthermore, high drought salience (e.g. as observed on surrounding 

vegetation, based on conversations in the community, or the news) may prime farmers to attribute 

crop losses to drought. Similarly, the intensity of the shock may matter for the idiosyncrasy in loss 

occurrence across plots (e.g. soil with superior water-retention capacity may be able to buffer for 

little rain on some plots to some extent) and the clear attribution of crop losses to drought as 

opposed to other reasons. Therefore, idiosyncratic variation in self-reported drought exposure is 

 
54 As noted previously, shock identification of the plot-level proxies is conditional on there being some crop 

production loss. More precisely, we are thus comparing the consistency of loss occurrence due to drought between 

plots. This leaves the chance that disagreement between plots is because some plots may not record a loss in the first 

place since they are less exposed to drought (e.g. due to irrigation or superior soil quality). We assume that this 

distinction is less relevant after excluding irrigated plots from the analysis and particularly in years with severe 

drought but investigate this possibility in more detail in the following section. 
55 Importantly, community reports use yearly (in Ethiopia corresponding to a period between mid-September and 

mid-September) reporting which means time periods are imperfectly aligned with seasonal patterns in agriculture. 

We therefore combine community shock reports for the current and previous year. Our main conclusions are robust 

to the use of only current year or previous year shock reports and indeed correlations are even lower in these cases. 
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least in years with severe drought where marginal differences in perceptions, benchmarks, or plot 

characteristics matter least for shock identification.  

An important caveat of the previous analysis is that it does not account for the fact that agreement 

may occur due to pure chance. In the LSMS-ISA data, farmers only face a binary “choice” between 

reporting or not reporting a shock (a loss due to a specific shock). This increases the chance for 

random agreement if farmers face some uncertainty when the choice is not obvious to them.56 In 

the absence of a verifiable “true value”, there is thus a need for a chance-corrected agreement 

measure. We take this from the literature on “interrater reliability” (or “agreement coefficients”) 

which has one of its most common applications in clinical studies where the suitability of a rating 

scale to elicit consistent answers from different raters is explored. These agreement coefficients 

provide a measure of homogeneity (or consensus) in ratings of one or more “subjects” given by 

different “raters”.57 

This paper adapts this framework to the context at hand: Shock occurrence (the subject) is 

evaluated by farmers on each plot within an EA (the raters) and classified into shock or no shock 

(the rating categories). Various agreement coefficients exist in the literature. They differ in their 

definition of “chance” and thus the correction they apply to observed rates of agreement. This 

paper opts for Gwet’s AC1 which features the highest flexibility regarding different numbers of 

raters, categories, subjects, and missing values while also being the most robust to a number of 

anomalies in other coefficients (Gwet, 2008, 2014). The standardized, chance-corrected agreement 

coefficients that are calculated for shock reports within an EA can lie in the range between -1 and 

1. A value of zero means observing as much agreement in farmers’ shock reports within the same 

EA as would be expected by pure chance. A value of positive 1 (negative 1), conversely, would 

imply perfect agreement (disagreement). The interpretation of all other values in the interval 

between -1 and 1 is somewhat arbitrary, however, a widely cited reference for interpretation is 

given by the Landis and Koch (1977) benchmark scale. Following the recommendation in Gwet 

(2014), we do not assign the coefficients obtained deterministically to the intervals on the Landis 

and Koch (LK) scale but acknowledge the probabilistic nature of the point estimates. We therefore 

rather assign coefficients to the highest interval on the LK scale for which the cumulative 

probability that the value falls into the interval exceeds 95 percent. Taking this framework to the 

data, we analyze the homogeneity in farmers’ loss identification due to specific shocks within the 

same EA (Table 13, Table A 11).58 

We calculate agreement coefficients for three different cases of shocks. 

1. Whether there were any maize productivity reductions on the plot 

2. Whether there were any drought productivity reductions on the plot 

3. Whether there were any plant productivity reductions due to too much rain on the plot 

 
56 In other terms, raw agreement does not necessarily reflect intrinsic agreement. 
57 One practical example may be studying the degree of agreement between several doctors in their diagnosis of a 

sample of patients. 
58 The analysis focuses on maize plots which constitute the largest share of the sample and shock reports based on 

damage on the crop which showed the highest agreement and greatest sensitivity to shocks thus far. 
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Furthermore, we also calculate a fourth agreement coefficient value that takes drought and rain 

damage as separate observations (separate “subjects”) on each plot and calculates a coefficient of 

chance-corrected agreement within an EA for this larger sample of observations. Throughout, we 

obtain a single, chance-corrected agreement coefficient based on comparing shock reports on plots 

within the same EA, i.e. we only compare those plots where it is reasonable to assume they face 

the same weather shocks. As before, we constrain our sample to those EAs where at least one plot 

recorded a certain shock.59 

Table 13: Ethiopia - Chance-adjusted agreement coefficients for self-reported shock exposure in 
EAs where at least one plot recorded the respective shock. 

Round Shock 
Gwet's 

AC SE 
N 

Raters 
N 

Subjects 
Obs. 

Agreement 
Exp. 

Agreement LB UB 

ESS18 

Any 0.359 0.045 1326 131 0.657 0.465 0.2 0.4 

Drought 0.389 0.080 546 56 0.685 0.485 0.2 0.4 

Rains 0.527 0.117 327 24 0.725 0.417 0.2 0.4 

All shocks 0.396 0.072 797 80 0.698 0.500 0.2 0.4 

ESS15 

Any 0.623 0.030 2641 201 0.773 0.398 0.4 0.6 

Drought 0.655 0.040 1732 143 0.785 0.378 0.4 0.6 

Rains 0.688 0.067 492 30 0.781 0.299 0.4 0.6 

All shocks 0.604 0.041 2051 173 0.784 0.455 0.4 0.6 

ESS13 

Any 0.427 0.034 2415 196 0.697 0.472 0.2 0.4 

Drought 0.458 0.061 877 85 0.719 0.481 0.2 0.4 

Rains 0.512 0.093 547 35 0.698 0.381 0.2 0.4 

All shocks 0.425 0.060 1186 120 0.712 0.500 0.2 0.4 
Note: Interrater reliability coefficients (Gwet's AC) for plots within the same enumeration area. Classification 
into benchmark interval is probabilistic, not deterministic; LB = lower boundary, UB = upper boundary; Landis 
and Koch (1977) benchmark scale for agreement coefficients: < 0 poor; 0-20 slight; 0.21 - 0.40 fair; 0.41 - 0.60 
moderate; 0.61 - 0.80 substantial; 0.81- 1.0 almost perfect. 

The coefficients obtained mostly fall in the range between 0.2 and 0.4 suggesting only limited 

agreement between farmers. Agreement tends to be lowest for whether there were any plant 

productivity reductions on the plot which is expected since idiosyncratic shocks may play a role 

here. On the other hand, rain shocks (either too much or too little rain) should be covariate within 

the EA which is reflected in slightly higher agreement. Coefficients are again highest in the round 

with the highest shock incidence, i.e. ESS15 lending further support to the hypothesis that the 

salience and intensity of the disaster plays a role for the consistency with which farmers record 

losses and attribute them to the same shock. Since we do not observe the “true value” of whether 

 
59 If we do not impose this constraint and compare shock reports for the full sample, we find high rates of 

agreement. These, however, are driven by low shock incidences in most rounds which, naturally, lead farmers to 

straightforwardly rule out the occurrence of a shock, e.g. a drought. From this, we can conclude that farmers 

relatively consistently rule out the occurrence of a shock, however, this does not imply how trustworthy farmers’ 

reports are if they claim to have incurred, for example, damage due to drought. Arguably, the latter is more relevant 

for the issue of attributing losses to disasters and we therefore only compare a sample in which there seems to be at 

least some chance that a shock actually occurred (see also the previous discussion in this section). 
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a shock occurred, this variation in farmers’ shock identification, particularly when drought was 

not severe, suggests that there is either non-negligible idiosyncrasy in shock identification or 

disaster crop losses itself are highly localized.60 

 

What do we conclude and still need to know? 

There are several options to attribute losses to shocks based on self-reports in the LSMS-ISA data, 

the most disaggregated of which are given by farmers’ reports of loss reasons at the plot-crop level. 

The most common shocks in the data are rainfall-related and should thus be covariate at small 

geographic aggregates. In general, the different shock proxies point in similar directions but vary 

in the shock incidence they suggest and are imperfectly correlated. The most sensitive measure of 

drought comes from a question on crop damage cause.  

Agreement in self-reported shock exposure is limited between plots of the same EA. While in most 

cases farmers consistently rule out the occurrence of a shock, the primary interest of this section 

is in the consistency of farmer reports in the face of a shock. We therefore focus on cases where a 

shock, for example a drought, may have occurred based on farmers reports and find the consistency 

of shock identification between plots to be generally rather low. However, agreement depends on 

shock intensity which may alleviate idiosyncrasies due to different perceptions (a source of 

variation we would like to eliminate) and due to differences in actual loss occurrence (variation 

we would like to retain).  

As this section cannot conclusively discern between the two sources of idiosyncratic variation, we 

conclude that it is difficult to confidently attribute losses to specific disasters based on self-reports 

alone. As a next step, it is thus necessary to further disentangle variation in self-reported shock 

identification due to differences in perception between farmers (a source of measurement error) 

from the variation that is due to highly localized shock impact at the sub-EA level. 

 

Question 6: How localized are drought losses and how confidently can we attribute losses to 

adverse rainfall based on self-reports? 

The previous analysis found notable idiosyncrasy in farmers’ self-reported shock identification but 

was unable to discern what part of this variation comes from differences in perceptions between 

farmers and what part is due to actual differences in loss occurrence at the micro-level. This section 

compares self-reported shock exposure data at the plot level to geospatial rainfall data and a set of 

observable plot characteristics. We hypothesize that any differences in loss occurrence within the 

same EA do not stem from differences in the occurrence or intensity of rainfall shocks but 

differences in their actual impact on agricultural production on different plots. For example, a 

number of sustainable land management (SLM) practices and plot characteristics, on top of 

irrigation, can reduce the susceptibility of a plot to disaster crop losses (Nkonya et al., 2018; Iizumi 

and Wagai, 2019; Lombardi et al., 2019; McCarthy et al., 2021). 

 
60 We reach a similar conclusion using shock reports based on area-losses or household-level reports and in Malawi. 
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By virtue of the rich LSMS-ISA data and in combination with geospatial rainfall data, we can 

control for many of these factors and identify the amount of variation in self-reported shock (loss) 

reports that is due differences in observable factors (such as rainfall intensity or SLM practices). 

Conversely, we assume that the remaining variation should then be attributable to unobservable 

factors such as idiosyncratic perceptions of farmers. This allows us to (i) identify the amount of 

variation in farmers’ reports that should be retained as it reflects differences in shock exposure and 

contrast this with (ii) undesirable variation that should ideally be eliminated. 

 

What do we see in the data? 

To obtain an objective drought measure, we exploit geospatial, yearly total rainfall data for the 

year in which the agricultural season in question started provided by the National Oceanic and 

Atmospheric Administration Climate Prediction Center’s (NOAA CPC) Africa Rainfall 

Climatology 2 (ARC2) dataset at 0.1° (~10km) resolution. As drought is a slow onset disaster and 

effects on crop losses should be greatest during the planting and growing season, this provides a 

basic, local measure of drought intensity. 

Comparing self-reported drought exposure, taken from reports of a planted area or plant 

productivity loss due to drought, to a drought indicator taken from 12-month total rainfall intensity 

being below the long-term average (since 2001), differences in incidence do not seem systematic 

(Table 14). Across years, farmers report either a notably higher or a notably lower incidence of 

drought exposure than the geospatial rainfall drought dummy. One notable exception is the 

2015/16 drought in Ethiopia where incidences between both measures are strikingly aligned 

Country Crop Round Self-reports GIS rainfall

ESS13 12.5% 0%

ESS15 39.3% 39.1%

ESS18 15.4% 33.3%

ESS13 18.7% 0%

ESS15 64.1% 64.7%

ESS18 29.0% 37.0%

IHPS10 28.3% 53.8%

IHPS13 5.2% 69.4%

IHPS16 21.7% 19.8%

IHPS19 3.7% 0.6%

IHPS10 33.8% 49.9%

IHPS13 8.1% 68.9%

IHPS16 32.3% 24.9%

IHPS19 7.1% 0.5%

Note: Percent of plots with drought exposure based on farmers' self reports 

(area or productivity losses due to drought) and based on total annual 

rainfall below the long-term average (since 2001). ESS = Ethiopia 

Socioeconomic Survey, IHPS = Integrated Household Panel Survey

Percent of plots with drought exposure based on..

Ethiopia

Malawi

Maize

Sorghum

Maize

Any

Table 14: Drought incidence for self reported exposure and a GIS rainfall data-based drought 
indicator. 
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lending further evidence in favor of the reliability of farmers’ self-reports in the face of a severe 

drought. 

Table 15: Ethiopia: Regression of self-reported drought exposure on measured rainfall intensity 
and controls. 

  (1) (2) (3) (4) (5) (6) 

 ESS13 ESS13 ESS15 ESS15 ESS18 ESS18 

VARIABLES Maize Sorghum Maize Sorghum Maize Sorghum 

              

12-month total rainfall (mm) -0.000247*** -0.000608*** -0.000672*** -0.000744*** -0.000103 -0.000147 

 (6.22e-05) (0.000151) (6.78e-05) (8.03e-05) (9.95e-05) (0.000123) 

Soil fertility index -0.00704 -0.00305 -0.0350 -0.0175 -0.0131 0.0508 

 (0.0136) (0.0199) (0.0267) (0.0299) (0.0291) (0.0550) 

Plot Potential Wetness Index -0.00352 0.00108 -0.00820 -0.00776 0.00138 0.00158 

 (0.00328) (0.00616) (0.00739) (0.00754) (0.00432) (0.00581) 

Plot Slope (percent) 0.000656 8.42e-05 -0.000754 -0.000852 -0.00567*** -0.00652** 

 (0.00101) (0.000938) (0.00211) (0.00197) (0.00217) (0.00259) 

Intercropped -0.0226 -0.0780** -0.0349 0.0435 0.0563 0.00169 

 (0.0166) (0.0381) (0.0343) (0.0389) (0.0351) (0.0340) 

Erosion control -0.00801 -0.0558 -0.0118 -0.00165 0.0692* -0.0303 

 (0.0194) (0.0452) (0.0419) (0.0438) (0.0395) (0.0439) 

Any organic fertilizer 0.00545 0.0600 0.0395 0.0374 -0.0207 0.0266 

 (0.0175) (0.0514) (0.0272) (0.0382) (0.0292) (0.0441) 

Any inorganic fertilizer on plot -0.0739** 0.0319 -0.0716 0.0977* -0.00839 0.0271 

 (0.0296) (0.0416) (0.0504) (0.0580) (0.0295) (0.0583) 

Improved seed 0.0397 0.179 0.0814 0.0511 0.00775 -0.0621 

 (0.0356) (0.161) (0.0499) (0.0486) (0.0437) (0.0773) 

Constant 0.706*** 1.245*** 1.516*** 1.501*** 0.192 0.264 

 (0.149) (0.276) (0.160) (0.166) (0.137) (0.183) 

       
Observations 2,908 2,342 2,931 2,344 1,605 1,210 

Adjusted R-squared 0.293 0.220 0.383 0.498 0.115 0.384 

Region FE YES YES YES YES YES YES 

Linear Probability Model regressing self-reported drought exposure on 12-month rainfall intensity and a number of controls that 
are potentially relevant for drought exposure. Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 15 and Table A 12 show regressions of self-reported crop damage due to drought on 12-

month total rainfall intensity and a number of controls hypothesized to be relevant for plot-level 

drought exposure (Nkonya et al., 2018; Iizumi and Wagai, 2019; Lombardi et al., 2019; McCarthy 

et al., 2021). The findings suggest that self-reports are significantly associated with low measured 

rainfall in the year in which the crop was planted and grown. Particularly in the 2015/16 Ethiopian 

Meher season, which featured widely reported drought (Philip et al., 2018; Sohnesen, 2020), 

observed rainfall explains a considerable share of the variation in farmers’ self-reports based on 

the adjusted R2. However, there is no robust set of plot-level predictors of self-reported drought 

exposure. This, in turn, leaves a significant share of the variation unexplained by observable 
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factors.61 This suggests that a non-negligible share of the idiosyncrasy in farmers’ self-reports are 

due to differences in perception rather than actual exposure to drought and casts doubt on the 

reliability of self-reported shock identification in order to attribute losses to shocks in years without 

a severe drought. 

 

What do we conclude and still need to know? 

Farmers’ self-reported drought exposure features considerable idiosyncrasy that is unexplainable 

by observable factors such as rainfall intensity or SLM practices. Therefore, differences in 

perception between farmers, rather than differences in actual exposure to drought, seem to drive 

the considerable variation in drought reports within the same EA that we observed earlier. This is 

somewhat attenuated in years with severe drought where local rainfall accounts for a substantial 

share of the variation in self-reported drought exposure. 

Therefore, for the attribution of losses to disasters and with rainfall data of sufficient resolution 

available, the “basis risk” of overlooking some truly idiosyncratic drought crop losses should be 

less severe than the measurement error incurred by relying on self-reports alone. One direction for 

future research could thus be the use of weather stations at a high density, e.g. the community 

level, or microsensors at even higher resolution to accurately contextualize self-reports and 

calibrate accurate measures of local shock exposure. 

5. Discussion and Takeaways 
Every year, disasters threaten millions of lives and livelihoods depending on agriculture in LMICs. 

What is more, this burden will likely increase in the coming decades due to the effects of climate 

change (Agnolucci et al., 2020). In order to inform robust disaster risk reduction policies, accurate 

measurement of crop losses is of paramount importance and an important component of SDG 1.5.2 

and Sendai indicator C-2. 

In recent years, advances in the availability of and methodological innovations in farm surveys 

have made them rich and reliable resources of primary data in agriculture (Carletto and Gourlay, 

2019). In the coming years, the 50x2030 initiative to close the agricultural data gap will 

furthermore provide an unprecedented opportunity to measure crop losses at a highly 

disaggregated level, in large samples across 50 LMICs, and over time. Survey data thus have the 

potential to complement existing approaches to measure disaster crop losses that come with 

demanding data requirements in the context of LMICs by providing data that is 

(i) high in spatial resolution and density 

(ii) scalable to collection and trialed and tested for the specifications of smallholder agriculture 

 
61 Our results are qualitatively robust to the use of a drought dummy (based on rainfall below the 14-year average) 

instead of absolute rainfall and for the use of a logit model instead of a linear probability model. Furthermore, they 

are robust to the use of a dummy whether there is any self-reported drought based on damage on the crop or area 

loss. 
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(iii) effortless to integrate with other survey information, e.g. on the behavioral components of 

crop management in the face of disasters and crop losses. 

 

As such, survey data may facilitate the future development of well-calibrated, accurate, and 

scalable hybrid models using sensor, remote-sensed, and survey data to measure disaster crop 

losses in LMICs. 

To tap into this potential, however, it is essential to understand the feasibility of measuring crop 

losses through survey data and develop a robust methodology. This paper pursues the question of 

operationalizing the recent methodology developed by Conforti, Markova and Tochkov (2020) for 

micro-level management through existing and future survey data. Specifically, it first analyzes the 

suitability of existing survey data to ascertain the magnitude of losses and secondly the ability to 

attribute the observed losses to specific disasters. 

The papers’ main findings are threefold. First, directly asking for different types of losses based 

on farmers’ self-reports provides relatively consistent estimates on an ordinal scale. However, 

assessing losses is a cognitively complex task and invites satisficing in farmers’ responses. As a 

result, forming accurate point-estimates of crop losses is impaired by concerns of numeracy and 

question format. Improvements in the phrasing and approach of asking for crop losses may allow 

for more precise answers. 

Secondly, we find that post-planting harvest expectations often seem fair estimates of the 

attainable harvest and may thus allow to proxy for losses indirectly, perhaps most so at the extreme 

when losses are large. 

Thirdly, farmers’ self-reported shock identification exhibits considerable variation even within 

small geographic aggregates and for shocks that should be covariate in nature. To a large extent, 

the variation in self-reported drought exposure is not explainable by observable factors such as 

rainfall intensity or sustainable land management (SLM) practices and seems thus driven by 

differences in farmers’ idiosyncratic perceptions. This is particularly conceivable for slow-onset 

disasters such as drought that lack a clear-cut benchmark or starting point. Importantly though, the 

intensity of the shock matters, with severe, salient shocks leading to more consistent shock 

identification between plots in the same area.  

Moving forward, we propose the following. 

For the quantification of losses 

Changes in the wording of the direct proxy questions for crop losses and perhaps the use of 

additional aids may reduce the cognitive complexity of the task and elicit answers more accurately. 

Alternatively, the risk of misreporting may be reduced by combining existing proxies into a single, 

direct question benchmarked against farmers’ self-reported attainable harvest. A third option could 

make use of farmers’ post-planting expectation information as a measure of the attainable harvest. 

While expectations perhaps may not serve as the sole proxy for the attainable harvest, they could 

be an important feature for econometric models that try to predict (attainable) yields. This approach 

may be particularly suited to capture losses on fully destroyed plots or otherwise large losses. 

Furthermore, the endogeneity in expectations as a proxy of the attainable harvest may be reduced 
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by priming farmers to think about the attainable harvest in the absence of shock. Testing these 

different options should be the subject of a future survey experiment. 

For the attribution of losses to disasters 

In our study region, rainfall-related shocks present the most common reasons for crop losses. 

While these shocks are covariant, they lack a clear-cut benchmark that would make relying on 

farmers’ self-reports alone a dependable strategy to attribute losses to disasters. While for large-

scale drought, it may be feasible to rely on self-reports, more fine-grained measurement in years 

with less severe drought would benefit from a high density of weather stations or the distribution 

of micro-sensors to accurately capture differences in drought exposure. 

Lastly, there is ample scope for future research. So far, we can mostly only study the internal 

consistency of different methods of measuring crop loss in survey data with no benchmark that 

would allow for an appraisal of their accuracy. An important element to ascertain the suitability of 

different options to estimate crop losses through survey data will thus be establishing a credible 

“gold standard” against which different methods can be compared. Furthermore, farmers’ 

expectation-building still leaves a large (behavioral) black box. Better understanding the factors 

that underlie this mental model would provide crucial insights into the feasibility of using farmers’ 

expectations to proxy for the attainable harvest. Similarly, future research may look into the 

possibility of drawing on a large set of possible predictors, including farmers’ expectations, planted 

area and plant productivity loss proxies, inputs, and plot characteristics to predict yields. Finally, 

one pivotal question this paper leaves for future research is the representativeness of losses elicited 

from a sample. In order to build accurate national and sub-national aggregates of losses and deliver 

evidence for disaster risk reduction policies in general and SDG 1.5.2 and Sendai indicator C-2 in 

particular, it will be central to develop a sound methodology to representatively aggregate losses 

measured through surveys. An important validation exercise will then be the comparison between 

post-disaster needs assessments (PDNAs) and existing aggregate estimates of disaster crop losses 

and the estimates formed from micro survey data. In this realm, it will also be essential to keep 

investing in the collection of accurate ground data on disaster incidences and impacts at different 

scales, explore synergies between different data sources, and link this information to preventive 

disaster risk reduction interventions. 
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7. Appendix 

 

Table A 1: Loss-to-harvest ratio using only planted area losses. 

Loss-to-harvest Ratio 

Ethiopia Crop 
Loss / 

Production 
Loss p. ha / 

Yield 
Loss / Production 

(any loss) 
Loss p. ha / Yield 

(any loss) 

ESS13 
Maize 0.06 0.06 1.00 1.01 

Sorghum 0.21 0.14 1.69 0.99 

ESS15 
Maize 0.14 0.11 1.31 0.91 

Sorghum 0.33 0.36 1.58 1.80 

ESS18 
Maize 0.10 0.09 0.91 1.02 

Sorghum 0.22 0.16 1.53 0.96 

Malawi           

IHPS19 
Maize 0.79 0.74 0.71 0.70 

Harvest Value 1.57 1.43 1.36 1.26 

 

 

Table A 2: Yield regressions with different loss proxies. 

MALAWI: Yield regressions with planted area losses proxies -- 
excl. full losses   

  (1) (2) (3) (4) 

VARIABLES log Value/Ha log Maize Yield log Value/Ha log Maize Yield 

          

Planted area harvested (%) 0.0243***    

 (0.00286)    
Planted maize area harvested (%)  0.00965***   

  (0.00139)   
log Area-based loss (MWK/ha)   -0.0903***  

   (0.0131)  
log Area-based loss (kg/ha)    -0.0342*** 

    (0.0116) 

Constant 9.898*** 3.890*** 12.14*** 4.531*** 

 (0.559) (0.301) (0.665) (0.287) 

     
Observations 2,087 1,507 2,087 1,507 

Adjusted R-squared 0.263 0.450 0.232 0.407 

District FE YES YES YES YES 

Controls YES YES YES YES 
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Regression of log harvest value per hectare and log maize yield on loss proxies and a range of household, plot, 
and plot manager characteristics as well as inputs. Clustered standard errors in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1 

 
   

Table A 3: Correlates of discrepancy between farmers' self-assessed crop damage and 
enumerators' assessments. 

Correlates of discrepancy   

  (1) (2) 

VARIABLES ln(SR/CC) |SR - CC| 

      

Farmer reports drought damage 0.515*** 11.52*** 

 (0.186) (2.914) 

Farmer reports termite damage -0.467*** 0.228 

 (0.178) (2.779) 

Farmer reports damage from crop disease -0.115 -10.29*** 

 (0.232) (3.629) 

GPS-Based Plot Area in Hectares -0.338 3.532 

 (0.529) (8.273) 

HH head is female -0.155 -3.623 

 (0.245) (3.831) 

Plot manager is respondent -0.312 3.712 

 (0.277) (4.336) 

Plot manager is female -0.0530 2.384 

 (0.205) (3.213) 

Age of plot manager (years) 0.00861 -0.181* 

 (0.00639) (0.0999) 

Plot manager education (years) 0.00194 -0.0282 

 (0.0201) (0.315) 

Constant 0.862** 22.64*** 

 (0.414) (6.472) 

   
Observations 202 202 

Adjusted R-squared 0.075 0.119 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A 4: Ethiopia - Regression of realized harvest and expected harvest on inputs, household, and plot manager 
characteristics. 

ETHIOPIA: Yield regressions: Realized Harvest vs. Expected Harvest 

  ln(Realized Yield) ln(Expected Yield) 

 ESS18 ESS15 ESS18 ESS15 

VARIABLES Maize Sorghum Maize Sorghum Maize Sorghum Maize Sorghum 

  (1) (2) (3) (4) (5) (6) (7) (8) 

                  

log Plot area (ha) 0.179** -0.0931 -0.184*** -0.249*** -0.0954 -0.0872 -0.192*** -0.197*** 

 (0.0754) (0.0657) (0.0487) (0.0695) (0.0623) (0.0652) (0.0384) (0.0574) 

log Tot. labor days/ha 0.114** 0.0990** 0.0212 0.0821 0.0967* 0.161*** 0.0536* 0.0815* 

 (0.0459) (0.0426) (0.0345) (0.0507) (0.0499) (0.0492) (0.0289) (0.0432) 

Any labor hired -0.236 -0.105 0.0858 0.0395 -0.0242 -0.111 0.159 0.0204 

 (0.186) (0.173) (0.142) (0.127) (0.110) (0.102) (0.102) (0.110) 

log Seeds (kg/ha) 0.311*** 0.300*** 0.280*** 0.211*** 0.376*** 0.400*** 0.366*** 0.410*** 

 (0.0766) (0.0739) (0.0556) (0.0740) (0.0498) (0.0726) (0.0489) (0.0655) 

Improved seed 0.0631 -0.0992 0.180 -0.772 0.463*** 0.328 0.213** -0.173 

 (0.196) (0.239) (0.114) (0.482) (0.114) (0.222) (0.0946) (0.377) 

log Inorganic fertilizer (kg/ha) 0.0498 0.0284 0.0772*** 0.108*** 0.0493** -0.00618 0.0489*** 0.0723*** 

 (0.0330) (0.0299) (0.0201) (0.0287) (0.0226) (0.0289) (0.0184) (0.0242) 

Any organic fertilizer 0.125 0.0818 0.0808 -0.0515 0.0515 0.00349 0.115* 0.107 

 (0.130) (0.167) (0.0900) (0.186) (0.110) (0.106) (0.0646) (0.117) 

Dependency ratio 0.110** -0.0839 0.0701* -0.117** -0.0881* -0.0390 0.0201 0.00877 

 (0.0518) (0.0598) (0.0366) (0.0563) (0.0451) (0.0360) (0.0303) (0.0491) 

Any HH member has primary edu 0.0444 0.178 0.0625 -0.169 -0.0438 0.0955 0.0840 -0.0336 

 (0.124) (0.115) (0.0961) (0.103) (0.0934) (0.0901) (0.0724) (0.0940) 

Ag Asset Index -0.151 0.0819 0.167** 0.188* 0.130** -0.0107 0.0247 0.0788 

 (0.0944) (0.0942) (0.0790) (0.0962) (0.0577) (0.0731) (0.0484) (0.0690) 

Female plot manager 0.319** 0.0366 -0.0487 -0.132 0.0473 -0.110 -0.0148 -0.0523 

 (0.151) (0.143) (0.111) (0.209) (0.0802) (0.110) (0.0732) (0.142) 

Plot manager age 0.00153 -0.0138*** 0.00470 0.00699** -0.000558 -0.00433* 0.00102 0.00586* 

 (0.00371) (0.00411) (0.00314) (0.00321) (0.00290) (0.00257) (0.00235) (0.00328) 
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Plot manager has primary edu 0.0581 -0.363** -0.00541 0.0442 0.0488 -0.0537 -0.0207 0.0463 

 (0.114) (0.167) (0.0873) (0.121) (0.102) (0.110) (0.0875) (0.115) 

Intercropped -0.652*** -0.288** -0.263*** -0.146 -0.276*** -0.365*** -0.250*** -0.347*** 

 (0.155) (0.142) (0.0940) (0.155) (0.0777) (0.122) (0.0879) (0.111) 

Soil fertility index 0.311** -0.0517 0.182** 0.131 -0.0515 -0.245 0.0858 0.00963 

 (0.148) (0.306) (0.0730) (0.115) (0.122) (0.175) (0.0615) (0.0778) 

Constant 5.088*** 5.963*** 4.269*** 4.919*** 4.598*** 5.359*** 4.441*** 4.408*** 

 (0.458) (0.431) (0.326) (0.360) (0.402) (0.351) (0.243) (0.298) 

             
Observations 1,678 1,281 2,971 2,444 1,630 1,240 2,845 2,345 

Adjusted R-squared 0.287 0.259 0.309 0.268 0.304 0.349 0.234 0.183 

District FE YES YES YES YES YES YES YES YES 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table A 5: Malawi - Regression of realized harvest and expected harvest on inputs, household, and plot manager 
characteristics. 

MALAWI - Yield regressions: Realized Maize Harvest vs. Expected Maize Harvest 
  ln(Maize Yield) ln(Expected Maize Yield) 

 IHPS19 IHPS15 IHPS13 IHPS10 IHPS19 IHPS15 IHPS13 IHPS10 

  (1) (2) (3) (4) (5) (6) (7) (8) 

                  

log Plot area (ha) -0.707* -0.828 -0.967** -0.998*** -0.0961 -1.007** -0.715*** -2.053*** 

 (0.386) (0.554) (0.385) (0.277) (0.413) (0.467) (0.257) (0.432) 

log Tot. labor days/ha 0.164*** 0.379 0.302** 0.210*** 0.123 0.124 0.334*** 0.00704 

 (0.0509) (0.264) (0.123) (0.0510) (0.0769) (0.115) (0.0909) (0.0765) 

Any labor hired 0.689*** 0.433 0.317** 0.191* 0.285** 0.434*** 0.437*** -0.137 

 (0.171) (0.312) (0.125) (0.0970) (0.140) (0.126) (0.139) (0.123) 

log Maize seeds (kg/ha) 0.369*** -0.154 0.142** -0.0368 0.567*** 0.372* 0.297*** 0.495*** 

 (0.0564) (0.237) (0.0593) (0.0465) (0.0910) (0.202) (0.0443) (0.0484) 

Plot has improved maize variety 0.113 0.0669   0.226** 0.110   
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 (0.0999) (0.221)   (0.102) (0.157)   
log Inorganic fertilizer (kg/ha) 0.104*** 0.108* 0.106*** 0.0786*** 0.162*** 0.0410 0.0775*** 0.0347 

 (0.0317) (0.0585) (0.0257) (0.0210) (0.0273) (0.0377) (0.0209) (0.0273) 

Any organic fertilizer 0.227** -0.171 0.0803 0.126 0.0619 -0.0537 0.0482 -0.170 

 (0.105) (0.324) (0.179) (0.0977) (0.115) (0.178) (0.198) (0.167) 

Dependency Ratio 0.0296 0.0360 0.0805 -0.000781 0.0234 0.0542 0.0750* 0.0228 

 (0.0871) (0.128) (0.0517) (0.0483) (0.108) (0.104) (0.0403) (0.0786) 

HH head has wage employment 0.127 0.199 -0.160 -0.0425 0.0104 0.0820 0.0937 -0.176 

 (0.210) (0.390) (0.200) (0.0963) (0.189) (0.273) (0.156) (0.152) 

Any HH member owns non-ag enterprise -0.0686 -0.0639 0.119 0.120 0.111 0.0902 -0.0371 -0.0972 

 (0.126) (0.266) (0.154) (0.0744) (0.133) (0.267) (0.128) (0.168) 

Ag Asset Index 0.374 2.084*** 0.523** 0.816*** 0.114 -0.0790 0.227 -0.101 

 (0.384) (0.543) (0.210) (0.235) (0.291) (0.330) (0.192) (0.249) 

Female plot manager 0.0227 -0.280 -0.142 -0.0638 0.126 -0.505* -0.163 -0.290*** 

 (0.117) (0.199) (0.121) (0.0820) (0.124) (0.268) (0.120) (0.101) 

Plot manager age -3.23e-06 -0.000150 -0.00217 -0.00455 -0.000845 0.00658 -0.00182 -0.00284 

 (0.00362) (0.00800) (0.00333) (0.00302) (0.00520) (0.00614) (0.00381) (0.00293) 

Edu years of plot manager 0.0309* -0.0407 0.0310** 0.0225* 0.0250 0.0140 0.0210 0.000883 

 (0.0182) (0.0403) (0.0128) (0.0113) (0.0184) (0.0191) (0.0128) (0.0180) 

Intercropped 0.0815 0.168 -0.199 -0.275** 0.0226 0.0670 -0.0886 0.177 

 (0.116) (0.290) (0.159) (0.127) (0.149) (0.152) (0.165) (0.178) 

Soil fertility index 0.0146 -0.0879 0.0251 0.0944* -0.0859 -0.263 -0.0171 0.0330 

 (0.0875) (0.306) (0.164) (0.0567) (0.0753) (0.177) (0.0889) (0.0913) 

Constant 4.190*** 4.444** 4.868*** 6.035*** 3.440*** 4.373*** 4.148*** 5.789*** 

 (0.339) (1.676) (0.738) (0.439) (0.743) (0.694) (0.570) (0.598) 

          
Observations 547 490 441 839 547 490 441 839 

Adjusted R-squared 0.354 0.246 0.340 0.471 0.421 0.383 0.421 0.391 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A 6: Malawi - Regressions of self-reported harvest realizations on expected harvest and a 
range of controls. 

Malawi         

Panel A: Harvest value (MWK) 
(1) (2) (3) (4) (5) (6) (7) (8) 

IHPS19 IHPS16 IHPS13 IHPS10 

                  

Expected harvest value (MWK) 0.514*** 0.402*** 0.523*** 0.336*** 0.725*** 0.437*** 0.354 0.257 

 (0.129) (0.0927) (0.102) (0.109) (0.102) (0.110) (0.225) (0.193) 

Planted area harvested (%)  181.2***          

  (38.06)          
Constant 13,434*** 4,466 14,445*** -16,564 7,743** 66,365 7,808** 16,974 

 (4,447) (24,474) (4,991) (28,693) (3,442) (51,522) (2,970) (16,379) 

Observations 2,114 2,112 1,379 1,379 1,247 1,247 1,258 1,258 

Adjusted R-squared 0.541 0.646 0.368 0.469 0.510 0.593 0.144 0.327 

Controls NO YES NO YES NO YES NO YES 

Panel B: Harvest value (MWK/ha) (9) (10) (11) (12) (13) (14) (15) (16) 

                 

Expected harvest value (MWK/ha) 0.551*** 0.425*** 0.530*** 0.409*** 0.678*** 0.379*** 0.0936*** 0.0486** 

 (0.0343) (0.0345) (0.0513) (0.0501) (0.111) (0.0820) (0.0271) (0.0210) 

Planted area harvested (%)  877.4***           

  (139.8)           
Constant 52,167*** 147,796 59,532*** -20,166 39,442*** 378,749 38,228*** 80,479** 

 (6,216) (94,256) (9,307) (101,789) (11,478) (241,858) (2,751) (34,676) 

Observations 2,114 2,112 1,379 1,379 1,247 1,247 1,258 1,258 

Adjusted R-squared 0.392 0.445 0.294 0.350 0.364 0.489 0.085 0.298 

Controls NO YES NO YES NO YES NO YES 

Panel C: Maize production (kg) (17) (18) (19) (20) (21) (22) (23) (24) 

                  

Expected maize harvest (kg) 0.783*** 0.545*** 0.654*** 0.440*** 0.580*** 0.112 0.129*** 0.0276 

 (0.0488) (0.0730) (0.0528) (0.0765) (0.105) (0.114) (0.0282) (0.0209) 

Planted maize area harvested (%)  1.828***          

  (0.510)          
Constant 47.25** -278.1 71.41*** -482.3 312.0*** 2,710* 428.3*** 1,023*** 

 (19.89) (525.7) (24.72) (583.6) (81.05) (1,418) (35.87) (356.9) 

Observations 568 544 493 490 442 442 842 842 

Adjusted R-squared 0.666 0.718 0.460 0.557 0.249 0.386 0.026 0.398 

Controls NO YES NO YES NO YES NO YES 
Note: Regression of self-reported realized harvest value (per hectare) (Panels A + B) or production (Panel C) on expected harvest value (per hectare) 
(Panels A + B) or production (Panel C), planted area loss (only IHPS19), and a number of plot, manager, and household controls as well as inputs and 
district fixed effects. Controls: Inputs - Plot area, total labor (p. ha), any hired labor dummy, seed quantity (p. ha), improved variety dummy (only IHPS19 
and IHPS15), inorganic fertilizer quantity (p. ha), any organic fertilizer dummy; Household - dependency ratio, head employed for wage dummy, any HH 
member owns non-ag enterprise dummy, any HH member has primary education dummy, agricultural asset index; Manager - female dummy, age, 
primary education dummy; Plot - intercropped dummy, precipitation of wettest month, soil fertility index, cash crop dummy; Zone fixed effects. 
Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A 7: Regressions of self-reported harvest realizations on expected harvest and a range of 
controls. 

Ethiopia - Production         

  (1) (2) (3) (4) (5) (6) (7) (8) 

 ESS15 ESS18 

VARIABLES 
SR maize Production 

(kg) 
SR sorghum Production 

(kg) 
SR maize Production 

(kg) 
SR sorghum 

Production (kg) 

                  

Expected maize production (kg) 0.285** 0.176**    0.395*** 0.179**    

 (0.115) (0.0817)    (0.0800) (0.0755)    
Expected sorghum production (kg)   0.253*** 0.113*    0.478*** 0.279*** 

   (0.0924) (0.0602)    (0.137) (0.104) 

Planted area harvested (%)  0.618*   0.328   0.882***   0.508 

  (0.361)   (0.225)   (0.337)   (0.353) 

Damage on crop (%)  -1.072**   -1.914***   -0.581*   -0.401 

  (0.478)   (0.332)   (0.339)   (0.423) 

Constant 144.1*** 177.3 126.0*** 196.3 81.48*** -183.6** 129.8*** 374.6* 

 (28.29) (119.2) (19.27) (124.0) (18.71) (86.99) (48.08) (208.9) 

            
Observations 2,928 2,841 2,397 2,336 1,685 1,629 1,302 1,240 

Adjusted R-squared 0.181 0.359 0.109 0.379 0.303 0.544 0.053 0.528 

Controls NO YES NO YES NO YES NO YES 

Note: Regression of realized production on expected produdction, planted area and plant productivity loss, and a number of plot-, 
manager-, and household controls as well as inputs and zone fixed effects.  Controls: Inputs - Plot area, total labor, any hired labor 
dummy, seed quantity, improved variety dummy, inorganic fertilizer quantity, any organic fertilizer dummy; Household - dependency 
ratio, any HH member has primary education dummy, agricultural asset index; Manager - female dummy, age, primary education 
dummy; Plot - intercropped dummy, precipitation of wettest month, soil fertility index; Zone fixed effects.  Clustered standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table A 8: Ethiopia - Shock prevalence across different proxies. 

Planted area loss 

  Round Any Drought Irregular rains Insects Animals Other 

Maize 

ESS13 0.13 0.04 0.04 0.01 0.03 0.03 

ESS15 0.19 0.11 0.11 0.01 0.03 0.02 

ESS18 0.17 0.02 0.05 0.03 0.03 0.04 

Sorghum 

ESS13 0.21 0.03 0.13 0.08 0.04 0.02 

ESS15 0.34 0.21 0.20 0.01 0.03 0.01 

ESS18 0.25 0.02 0.16 0.01 0.04 0.02 

Plant productivity loss 

  Round Any Drought Too much rain Insects   Other 
Maize ESS13 0.41 0.13 0.03 0.05   0.19 
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ESS15 0.56 0.39 0.02 0.02   0.12 

ESS18 0.43 0.16 0.05 0.08   0.15 

Sorghum 

ESS13 0.46 0.18 0.01 0.12   0.14 

ESS15 0.74 0.65 0.02 0.01   0.07 

ESS18 0.53 0.29 0.06 0.05   0.13 

HH reported 

  Round Any Drought Heavy rains Flood Landslides 

Other 
crop 

damage 

HH lvl. 

ESS13 0.14 0.08 0.01 0.02 0.00 0.05 

ESS15 0.37 0.30 0.03 0.01 0.01 0.10 

ESS18 0.15 0.09 0.02 0.03 0.00 0.04 

Community reported 

  Round 

Any 
(last 
2y) 

Drought 
(this 
year) 

Drought 
(last year) 

Flood 
(this 
year) 

Flood 
(last year)   

EA lvl. 

ESS13 0.27 0.02 0.13 0.03 0.14   

ESS15 0.50 0.23 0.23 0.01 0.06   

ESS18 0.17 0.03 0.20 0.04 0.10   

 

 

Table A 9: Malawi - Shock prevalence across different proxies. 

Planted area loss 

  Round Any Drought Irregular rains Flood Other 

Maize 

IHPS10 0.57 0.36 0.13   0.03 

IHPS13 0.55 0.07 0.14 0.15 0.05 

IHPS16 0.65 0.28 0.34 0.01 0.02 

IHPS19 0.61 0.05 0.15 0.25 0.04 

HH reported 

  Round Drought Flood       

HH lvl. 

IHPS10 0.48 0.05       

IHPS13 0.63 0.19       

IHPS16 0.89 0.16       

IHPS19 0.68 0.38       

Community reported 

  Round 
Any 

(last 2y) 
Drought 

(this year) 
Drought 

(last year) 
Flood 

(this year) 
Flood 

(last year) 

EA lvl. 

IHPS10 0.33 0.01 0.26 0.01 0.05 

IHPS13 0.41 0.12 0.21 0.09 0.04 

IHPS16 0.63 0.18 0.42 0.04 0.19 

IHPS19 0.49 0.06 0.13 0.20 0.26 
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Table A 10: Intra-farm consistency in drought exposure reports. 

Panel A: Ethiopia 
Round Crop N All Drought Damage 

ESS13 
Maize 92 64% 

Sorghum 150 68% 

ESS15 
Maize 333 77% 

Sorghum 405 89% 

ESS18 
Maize 103 50% 

Sorghum 124 70% 
Note: Share of farms with with more than one maize/sorghum 
plot and at least one plot with drought damage that have 
damage on every maize/sorghum plot. 

 

Table A 11: Malawi - Chance-adjusted agreement coefficients for self-reported shock exposure 
in EAs where at least one plot recorded the respective shock. 

Round Shock 
Gwet’s 

AC SE N Raters N Subjects 
Obs. 
Agreement 

Exp. 
Agreement LB UB 

IHPS19 

Drought 0.579 0.126 643 26 0.696 0.277 0.2 0.4 

Flood 0.206 0.085 1057 51 0.579 0.471 0 0.2 

Irregular Rain 0.412 0.083 1340 58 0.641 0.389 0.2 0.4 

All shocks 0.370 0.059 1504 135 0.629 0.411 0.2 0.4 

IHPS16 

Drought 0.192 0.114 804 56 0.595 0.499 0 0.2 

Flood 0.809 0.108 90 5 0.881 0.374 0.4 0.6 

Irregular Rain 0.237 0.090 1000 66 0.618 0.500 0 0.2 

All shocks 0.234 0.069 1039 127 0.617 0.500 0 0.2 

IHPS13 

Drought 0.501 0.097 401 25 0.662 0.324 0.2 0.4 

Flood 0.326 0.090 501 31 0.633 0.457 0 0.2 

Irregular Rain 0.432 0.080 727 47 0.648 0.380 0.2 0.4 

All shocks 0.416 0.048 881 103 0.647 0.396 0.2 0.4 

IHPS10 

Drought 0.204 0.080 643 48 0.600 0.497 0 0.2 

Irregular Rain 0.326 0.112 529 39 0.613 0.425 0 0.2 

All shocks 0.224 0.076 803 87 0.605 0.491 0 0.2 

Note: Interrater reliability coefficients (Gwet's AC) for plots within the same enumeration area. Classification 
into benchmark interval is probabilistic, not deterministic; LB = lower boundary, UB = upper boundary; Landis 
and Koch (1977) benchmark scale for agreement coefficients: < 0 poor; 0-20 slight; 0.21 - 0.40 fair; 0.41 - 0.60 
moderate; 0.61 - 0.80 substantial; 0.81- 1.0 almost perfect. 

 

 

Panel B: Malawi 
Round Crop N All Drought Area loss 

IHPS10 Maize 91 90% 

IHPS13 Maize 22 82% 

IHPS16 Maize 73 67% 

IHPS19 Maize 30 30% 
Note: Share of farms with with more than one maize plot and 
at least one plot with planted area loss due to drought that 
have drought planted area loss on every maize plot. 
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Table A 12: Malawi: Regression of self-reported drought exposure on measured rainfall intensity 
and controls. 

  (1) (2) (3) 

VARIABLES IHPS13 IHPS16 IHPS19 

        

12-month total rainfall (mm) -0.000582*** -0.000305** -3.88e-05 

 (0.000217) (0.000128) (0.000241) 

Soil fertility index -0.0269 0.0110 0.0142* 

 (0.0239) (0.0304) (0.00834) 

Plot Potential Wetness Index 0.00874* 0.0123* 0.00105 

 (0.00512) (0.00631) (0.00201) 

Plot Slope (percent) 0.000432 -0.00328 -0.000594 

 (0.00243) (0.00382) (0.000946) 

Intercropped 0.0523 0.114*** 0.0321*** 

 (0.0390) (0.0411) (0.0122) 

Plot has any erosion control structure -0.0226 0.0461 -0.0115 

 (0.0240) (0.0335) (0.0189) 

Any organic fertilizer 0.0147 0.0340 0.0346* 

 (0.0256) (0.0239) (0.0187) 

Inorganic fertilizer was applied on plot -0.0613* 0.0105 0.0117 

 (0.0350) (0.0322) (0.0162) 

Plot has improved maize variety  0.0130 -0.000186 

  (0.0221) (0.0119) 

Constant 0.639*** 0.158 0.0379 

 (0.225) (0.172) (0.301) 

    
Observations 925 1,004 1,490 

Adjusted R-squared 0.052 0.370 0.111 

District FE YES YES YES 
Linear Probability Model regressing self-reported drought exposure on 12-month rainfall intensity and a 
number of controls that are potentially relevant for drought exposure. Clustered standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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