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Abstract

An accurate understanding of how input use affects agricultural productivity in smallholder

farming systems is key to designing policies that can improve productivity, food security and

living standards in rural areas. Studies examining the relationships between agricultural pro-

ductivity and inputs typically rely on land productivity measures, such as crop yields, that are

informed by self-reported survey data on crop production. This paper leverages unique sur-

vey data from Mali to demonstrate that self-reported crop yields, vis-à-vis (objective) crop cut

yields, are subject to non-classical measurement error that biases the estimated returns to in-

puts, including land, labor, fertilizer, and seeds. The analysis validates an alternative approach

to estimate the relationship between crop yields and inputs using large-scale surveys, namely a

within-survey imputation exercise that derives predicted, otherwise unobserved, objective crop

yields that stem from a machine learning model that is estimated with a random sub-sample

of plots for which crop cutting and self-reported yields are both available. Using data from a

methodological survey experiment and a nationally representative survey conducted in Mali,

the analysis demonstrates that it is possible to obtain predicted objective sorghum yields with

attenuated non-classical measurement error, resulting in a less-biased assessment of the relation-

ship between yields and agricultural inputs. The discussion expands on the implications of the

findings for (i) research on agricultural intensification, and (ii) the design of future surveys in

which objective data collection could be limited to a sub-sample to save costs, with the intention

to apply the suggested machine learning approach.
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1 Introduction

Small farms (with fewer than 2 ha) represent 84% of the estimated 570 million farms worldwide (Lowder

et al., 2016). In view of the prevalence of smallholder farming across the developing world and the

linkages between agricultural and welfare outcomes, one of the targets of the Sustainable Development

Goal of Ending Hunger has been identified as doubling the agricultural productivity and incomes of

small-scale food producers. One measure of agricultural productivity is crop yield, which is the amount

of crop production harvested per unit of cultivated land. Increasing crop yields has been a long-standing

goal of African governments and is key to feeding a growing global population while managing natural

resources efficiently (Lobell et al., 2009; van Ittersum et al., 2013; Zhang et al., 2016).

Despite the seemingly simple formula for computing crop yields, and its frequent use in agricultural

economics research, obtaining accurate measures of crop yields is underlined by a host of challenges

in low- and middle-income countries, mainly due to reliance on household and farm surveys and mea-

surement errors in self-reported information on crop production and cultivated area. Research has

demonstrated the effects of these measurement errors on our understanding of the inverse-scale produc-

tivity relationship (IR) in agriculture – i.e. the finding that the productivity measures, including crop

yields, are, on average, higher on smaller farms and plots vis-à-vis their larger counterparts.

The first strand of research has focused on the denominator in the formula for crop yields: cultivated

land area, and has documented systematic discrepancies between GPS-based and self-reported plot areas

(Carletto et al., 2013; Carletto et al., 2015; Kilic et al., 2017). The cross-country comparable finding

across these studies is that on average, farmers tend to over-report plot areas, and more so at the lower

end of the plot area distribution. As a result of using GPS-based plot area measures, as opposed to

their self-reported counterparts, research has shown that the IR, though weakened, remained statistically

significant.

The second strand of research has focused on the numerator in the formula for crop yields: total crop

production, which, in low- and middle-income countries, has traditionally been based on self-reported

survey data. There are, however, several complications in eliciting accurate self-reported information

on crop production, including (i) potential recall biases, in part as a function of when data are collected

vis-à-vis the harvest period (Wollburg et al., 2021), (ii) inclination to round off numbers (as shown by

Gourlay et al. (2019) for crop production and by Carletto et al. (2015) for land area), and (iii) reliance on

non standard measurement units, such as bunches and carts, and gaps in the availability and quality of

conversion factors that are required to express non-standard measurement units in kilogram-equivalent

terms and that are ideally differentiated for different conditions in which crop harvest may be reported

by farmers (Oseni et al., 2017). Researchers have demonstrated that self-reported crop yields are subject

to non-classical measurement errors, and are over-estimated on smaller plots, in comparison to objective

measured yields based on crop cutting, i.e. the gold standard, albeit resource- and supervision-intensive,

approach to crop yield estimation based on weighing the harvest of a randomly selected sub-section of

a farmer’s plot. The key cross-country finding of interest is that at the plot-level the IR is strong and

statistically significant when self-reported crop yields are used, and that the IR ceases to exist when crop

cutting yields are used instead (Desiere and Jolliffe, 2018 and Abay et al., 2019 for Ethiopia; Gourlay
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et al., 2019 for Uganda).

Against this background, the first contribution of our paper is to provide empirical evidence from

an alternative smallholder farming system in Mali on non-classical measurement errors (NCME) in

self-reported (SR) crop yields vis-à-vis their crop cutting (CC) counterparts on the same plots and

demonstrate the consequences of NCME in SR yields for the estimated relationships between crop yields

and agricultural inputs besides land, specifically seeds and labor. The literature’s heavy focus on land

is understandable given that it is a primary factor of production. And our analysis fully corroborates

the findings of Desiere and Jolliffe (2018), Gourlay et al. (2019), and Abay et al. (2019). However, with

rising population densities and low levels of agricultural productivity, especially in Sub-Saharan Africa,

more attention is being paid to the effects of measurement errors on the understanding of agricultural

intensification (Abay et al., 2021) and of the extent of misallocation of inputs across farms (Gollin and

Udry, 2021). In this context, understanding how crop yields relate to the use of other agricultural inputs

is of great policy relevance.

To do so, however, it is necessary to ensure that the relationships are correctly assessed and are

anchored in high quality survey data. Recognizing the technical and resource constraints that are faced

by survey implementing agencies in contexts where data and yield improvements are needed the most,

we present and validate an innovative approach to agricultural survey data collection and analysis in

a way that requires the implementation of crop cutting only in a sub-sample of households/plots and

that leverages machine learning techniques to derive predicted objective measures of crop yields for the

sub-sample that is not subject to crop cutting. This constitutes the second contribution of our paper to

the literature. In recent years, machine learning (ML) techniques have made their way into economics

research and have proved their utility. Athey (2018), as part of an assessment of the early contributions

of ML to economics, indicates that ML techniques have been most successful when applied to problems

that require predictions as in our case. Furthermore, applying ML in agricultural economics research

makes sense to model key variables such as crop yield, which is determined by a complex combination

of soil quality, weather, input timing and other management choices, replete with non-linearities and

interactions (Storm et al., 2020).

Our analysis showcases (a) the utility of ML techniques for predicting CC yields as a function of SR

yields and complementary survey and geospatial data, and (b) the reliability of the resulting predicted

CC yields in the analysis of the relationships between crop yields and agricultural inputs. We show

analytically and empirically that predicted CC yields, although informed in part by SR yields, have

attenuated NCME, which is uncorrelated with the intensity of agricultural input use. Only one-third of

the sample is found to be sufficient for implementing crop cutting alongside self-reported survey data

collection, such that an ML model can generate predicted CC yields for the rest of the sample in a

way that leads to reliable parameter estimates of the relationships between yields and inputs. The

findings reveal the importance of using SR yields as a predictor variable, and hence, underscores the

need to continue to collect and improve the quality of self-reported survey data on crop production.

Our analysis is first conducted with the data from a small-scale methodological survey experiment and

is then replicated with the data from a nationally-representative survey to verify the external validity of

3



our conclusions. Beyond the methodological findings, our analysis has significant policy implications as

it suggests that using self-reported yields, the returns of additional inputs per area of land are overstated

and as such, it would indicate that agricultural intensification could have limited benefit in the context

of the study.

The paper is organized as follows. Section 2 discusses the data and provides the descriptive statistics.

Section 3 discusses how the choice of the yield measure affects the characterization of the relationship

between land productivity and the agricultural inputs of interest, namely land area, seed quantity and

household labor. Section 4 presents the machine learning framework and the results. Section 5 discusses

the implications for survey data collection protocols. Section 6 concludes.

2 Data

2.1 Context

Our work is primarily informed by data collected during the 2017/2018 agricultural season as part of

a methodological survey: the Enquête sur les Rendements et l’Identification des Variétés du Sorgho

(ERIVaS), focused on sorghum yield measurement and variety identification.1 The fieldwork was con-

ducted in Diöıla district, which is located in the region of Koulikoro, in south central Mali. Sorghum

is a major crop in Mali, planted on 26% of plots cultivated by agricultural households, which account

for 90% of rural households representing 80% of the population of Mali.2 Koulikoro is one of the main

growing regions of this staple.

ERIVaS was set up to assess the relative accuracy of self-reporting on land areas, sorghum varieties,

and sorghum yields vis-à-vis objective measurement methods, namely GPS for land area measurement,

DNA fingerprinting for varietal identification, and crop cutting and satellite-based methods for crop

yield estimation.3

2.2 Fieldwork details

Four 10x10 km areas (henceforth referred to as strata) were geospatially delineated in Diöıla to ensure

heterogeneity in terms of relief and terrain type. In each stratum, 150 households were to be selected

and the number of households selected in each of the 17 villages located across the four strata was

proportional to the total number of households in the villages found during the listing exercise. Given

the low incidence of inter-cropping in our study area, only households with pure stand sorghum plots

were considered for data collection. In each sampled household, one pure stand sorghum plot was

randomly selected among the pure stand sorghum plots cultivated by the household. The result of this

sampling exercise was 600 sorghum pure stand plots (one in each) of 600 households distributed in 17

1Sorghum yield and varieties identification methodological survey. The survey was designed as part of the World
Bank LSMS methodological research agenda on measurement of crop yields in household surveys.

2Author’s calculation based on the Mali LSMS-ISA 2017 data.
3The analysis related to remote sensing measurement of yields and how the method compares to other methods

is pursued in (Lobell et al., 2019). We compare part of the results obtained in both studies later in this analysis.
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villages located in four strata across Diöıla. ERIVaS was conducted in three visits by semi-resident4

enumerators.

During the first visit fieldwork, which was conducted in the post-planting period (September-

November 2017), each household received a light household questionnaire that elicited basic socioe-

conomic information, and this was augmented with an agriculture questionnaire that collected detailed

information on farm organization, land tenure, crop cultivation and seed use, at either parcel- or parcel-

plot-level, depending on the topic. Following the random selection of the pure stand sorghum plot, the

enumerator visited the plot location with the farmer, delineated the plot boundaries with the farmer

and stored them on a handheld GPS unit, and set-up an 8x8m sub-plot for crop cutting, following the

same protocol that was published by Gourlay et al. (2019) and that ensured the random placement of

the sub-plot on each sampled plot. Each sub-plot was further divided into four 4x4m quadrants for

which harvest was ultimately processed, weighed, and recorded separately.

During the second visit fieldwork, which was conducted immediately after the harvest (December

2017), the enumerators harvested the sub-plots with the help of the farmers and recorded the weight of

the crop production immediately after the harvest and after additional drying at the enumerator’s resi-

dence. During the third visit fieldwork, which was implemented during the post-harvest period (Febru-

ary 2018), each household received an agriculture questionnaire that collected self-reported, parcel-plot-

level information on sorghum production and use of agricultural inputs, including fertilizer, household

labor, and hired labor. Our analysis is based on 5775 pure stand sorghum plots, with matching crop

cutting and self-reported yield measures, augmented with plot- and household-level survey data and

third-party geospatial data that are linked with georeferenced plot locations.

Intensive data quality controls and supervision measures were put in place to ensure that each crop

cut sub-plot was placed in accordance with the desired protocol; was not managed by the farmer differ-

ently vis-à-vis the rest of the plot; was not harvested by the farmer without the presence and supervision

of the enumerator; and was harvested to ensure that production could be weighed and recorded sepa-

rately for each quadrant, without including plants outside each quadrant.6 These supervision measures

contribute to the substantial additional costs associated with crop cutting and provide further impetus

for our efforts to get more out of crop cutting, self-reported survey data and cutting-edge imputation

techniques to improve agricultural survey data even when crop cutting may not be implemented at full

scale. On the other hand, intensive supervision measures are unlikely to eliminate biases in SR yields7

and these biases may in turn be correlated with self-reported information on the very agricultural inputs,

4One field team covered each stratum and resided in the most amenable village of that stratum throughout the
fieldwork

5Of the 600 plots selected, we drop 23 from this analysis for the following reasons: 18 crop cut subplots were
harvested by farmers in the absence of the enumerators and as such had missing crop cut data, 3 plots had missing
self-reported data due to a programming mistake, 1 plot had 100% self-reported loss but 0% enumerator assessed
damage, and 1 plot was in the opposite situation: 100% enumerator assessed damage but 0% farmer reported loss.

6Appendix C.1 provides details of the fieldwork protocol followed for the crop-cut and the questionnaires fielded
are available upon request.

7When we compare household production reported by farmers on their selected plots with the non-selected pure
sorghum plots, there is no statistically significant difference, indicating that they do not try to be more accurate
when reporting the production on the selected plots.
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whose relationships with crop yields we are trying to assess.

2.3 Descriptive statistics

Table 1 presents summary statistics of the main plot and household level variables used in the analysis.

The first part of the table displays plot characteristics. The variables extracted from the GPS coor-

dinates show that most of the plots are located on similarly flat terrain within a 5 km radius of the

household’s dwelling. In terms of land tenure, 95% of the plots are reportedly owned by the households

cultivating them. The plot managers of these plots are mostly middle-aged men with low literacy levels.

The average size of the associated households was 19,8 and households were headed overwhelmingly

by middle-aged men most of whom were illiterate. The average number of cultivated plots is further

indication that agriculture is the main activity for the households. Furthermore, the average GPS-based

plot area is considerably larger than the available estimates observed in smallholder farming systems

elsewhere in Africa. For example, Desiere and Jolliffe (2018), Gourlay et al. (2019), Abay et al. (2019)

report average plot sizes ranging from 0.12 to 0.37 hectares in their sample. The incidence of agricultural

input use was, on average, 33% for hired labor and 24% for fertilizer.

Table 2 reports estimates for plot-level for sorghum production (kilograms) and yields (kilograms

per hectare).9 The competing figures are based on plot-level self-reported sorghum production versus

estimated sorghum production that is tied to the crop harvest for the 8m x 8m crop cut sub-plot and

separately, a randomly chosen 4m x 4m quadrant within the sub-plot.10 All yield measures use the

GPS-based plot areas. As we do not find statistically significant differences between crop cut yields as

a function of the size of the crop cut, in the rest of the analysis, CC yields are tied to the 8m x 8m

sub-plot.

We see that the average difference between SR yields and each of CC yield is statistically significant

at the 1% level, and on average, SR yields are 21% higher than their CC counterparts. The distribu-

tional differences between SR and CC yields are, however, not statistically significant. On the other

hand, although there are statistically significant distributional differences between SR and CC sorghum

production estimates, but we find no statistical difference in the means. The fact that we find signifi-

cant differences between means but not distributions for yield measures and vice versa for production

measures can in part be explained by the standard errors, which are relatively larger at the mean in the

case of the production measures, making it difficult to detect differences for the point estimates. These

differences are picked-up when we conduct the tests of distributional differences.

8The household size may appear to be large but it is typical of rural households in the region: based on 153
observations in the Mali LSMS-ISA 2017 data, the mean number of individuals in households with at least one
sorghum plot in the district of Diöıla is 17, with a 95% confidence interval of [14.9, 19.6].

9These results are robust to the treatment of outliers in the SR variable via winsorizing. See Table A1 in Appendix
A.

10Total CC-based sorghum production is computed by multiplying the 8x8m CC yield with the GPS-based plot
area. The harvest measure for one of the four 4m x 4m quadrants is randomly chosen in each of the 8m x 8m subplots
to compute the yield and harvest for the CC 4m x 4m method.
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Table 1: Summary Statistics of selected variables in ERIVaS sample

Variable Mean Std.Dev Min Median Max Obs.
Plot Characteristics
Slope (percent) 1.31 0.70 1.00 1.00 8.00 577
Elevation (m) 335.31 22.21 240.00 333.00 487.00 577
Potential Wetness Index 16.24 4.95 12.00 15.00 36.00 577
Plot has erosion problems† 0.20 0.40 0.00 0.00 1.00 577
Euclidean distance to dwelling (km) 2.11 2.01 0.00 1.66 18.39 577
Self-reported distance to market (km) 7.55 5.40 0.00 7.00 30.00 577
HH owns the plot† 0.95 0.21 0.00 1.00 1.00 577
Plot Manager Characteristics
Plot manager is female 0.01 0.08 0.00 0.00 1.00 577
Age of plot manager 52.81 14.24 15.00 53.00 97.00 577
Plot manager is literate 0.10 0.30 0.00 0.00 1.00 577
Household Characteristics
HH size 19.14 11.79 2.00 16.00 60.00 577
Dependency ratio 1.15 0.53 0.00 1.12 3.50 577
Head of HH is female 0.01 0.08 0.00 0.00 1.00 577
Age of head of HH 55.96 14.52 18.00 57.00 97.00 577
Head of HH is literate 0.08 0.28 0.00 0.00 1.00 577
Number of plots cultivated by HH 5.26 2.33 1.00 5.00 18.00 577
Number of Sorghum plots cultivated by HH 1.50 0.81 1.00 1.00 7.00 577
Number of Cotton plots cultivated by HH 1.34 0.82 0.00 1.00 7.00 577
Inputs Usage on plot
GPS measured area (ha) 1.56 1.25 0.05 1.20 12.02 577
Quantity of Seeds used (kg) 8.30 5.90 0.56 6.56 51.02 577
Household labor on plot (persons-days) 159.30 267.37 8.36 76.40 2711.45 577
Hired labor† 0.33 0.47 0.00 0.00 1.00 577
Hired labor (persons-days) 15.23 180.21 0.00 0.00 4195.02 577
Organic fertilizer† 0.24 0.43 0.00 0.00 1.00 577
Mineral/Chemical fertilizer† 0.30 0.46 0.00 0.00 1.00 577
Mineral/Chemical fertilizer (kg) 25.74 59.85 0.00 0.00 750.00 577
Pesticides† 0.50 0.50 0.00 1.00 1.00 577
Yields (kg/ha)
Self-reported 636.9 822.3 0.0 400.0 8139.5 577
Crop-cut 8m x 8m 500.7 380.1 0.0 423.4 2472.5 577
Crop-cut 4m x 4m 501.0 402.4 0.0 419.4 2690.0 577
Harvest (kg)
Self-reported (plots without crop-cut) 738.7 1000.2 0.0 438.5 10000.0 305
Self-reported 837.3 1147.3 0.0 488.7 9773.3 577
Crop-cut 8m x 8m 794.4 959.8 0.0 515.9 9253.2 577
Crop-cut 4m x 4m 782.2 980.0 0.0 463.3 9312.2 577

Notes: Dependent ratio is the ratio of number of members in the household less than 15 and more than
70 years old over the members between 15 and 70 years old. HH refers to household. † denotes a dummy
variable.
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Table 2: Comparison of plot-level measures of sorghum yields and harvests in ERIVaS

Yields (kg/ha) Harvest (kg)

Means
SR 636.9 837.3
CC 8m x 8m 500.7 794.4
CC 4m x 4m 501.0 782.2
Difference in Means
SR vs CC 8m x 8m 136.2*** 42.9

(33.5) (45.1)
SR vs CC 4m x 4m 135.9*** 55.1

(33.6) (47.0)
CC 8m x 8m vs CC 4m x 4m -0.3 12.2

(6.1) (11.0)
Difference in Distribution
SR vs CC 8m x 8m ***
SR vs CC 4m x 4m * ***
CC 8m x 8m vs CC 4m x 4m

Notes: Standard Errors are shown in parentheses. Distributional differences are assessed
using the Kolmogorov-Smirnov two-sample test. Statistical significance levels: *p<0.1;
**p<0.05; ***p<0.01. Results with winsorizing of top 2.5 percent values of SR are
shown in Table A1 in Appendix A

2.4 Correlates of measurement errors in self-reported vs. crop cut

measure of yields

Next, we showcase the drivers of the measurement errors in plot-level SR yields vis-à-vis their CC

counterparts. Given the myriad of covariates that can affect both yield measures, we use the ML

algorithm LASSO to search through the pool of available covariates11 and select the variables that

are the most predictive of the difference: [log SR − log CC]. Figure 1 shows the variables selected at

least once after 100 simulations and their probability of inclusion. The key variables in this list include

household labor, plot area, and quantity of seeds. These are the three inputs12 that we focus on for the

rest of the analysis.

To better get a sense of the direction in which the selected covariates impact measurement errors

in yields, we regress [log SR− log CC] on the selected variables. This is akin to how (Abay et al., 2019)

and (Gourlay et al., 2019) explore the correlates of measurement errors in production data. While their

choice of covariates is based upon the authors’ knowledge of the context and may appear arbitrary, our

specification is more data driven and similar in spirit to an OLS-post LASSO estimation framework,

which has the advantage of having a smaller bias even when the model is mis-specified (Belloni and

Chernozhukov, 2013). The regression results are recorded in Table 3. The negative and statistically

11The covariates include factors of production that affect yields and field work related variables such as character-
istics of respondents interacted with plot, households and enumerators dummies.

12It is striking that the dichotomous variables indicating the use of organic and chemical fertilizers do not appear
as a key predictor of the difference of SR and CC yields. Per hectare use of chemical fertilizer may have carried a
stronger signal but the quality of the data collected on this front was not satisfying so we did not further investigate
the question for this input.
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Figure 1: The graph shows variables with probability of inclusion greater than 0. 100 simulations are run
on a training sample made of 80 percent of the ERIVaS sample. Labor, plot area and quantity of seeds are
in log form. * indicates that the variable is interacted with enumerator fixed effect.
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Rain fall
July
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0.0 0.2 0.4 0.6 0.8
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significant coefficient on plot area indicates a tendency on the part of farmers to over-estimate their

yields on smaller plots. The extent of over-estimation in SR yields is greater on plots with higher

intensity of agricultural input use.13

It is difficult to assert formally the mechanisms behind the correlates of the overestimation but

knowing the context, it is possible to speculate on the potential explanations. For example, the number

of cotton plots cultivated by the household is negatively associated with the farmers’ tendency to

overestimate yields. With the ERIVaS study area being in the Malian cotton belt, farmers with cotton

plots have received advice and assistance from agriculture extension agents. They are, therefore, likely

to have better grasp of the production potential of their plots and to not overestimate their yields.

There are additional findings that may be useful to keep in mind for future survey design. For instance,

the extent of overestimation is reduced when the harvest is reported in large non-standard units. This

is in part explained by the fact that plots with large harvests are of large size and are subject to

underestimation of SR yields. This finding also suggests that allowing for non-standard measurement

units in data collection and using conversion factors to express them in kilogram-equivalent terms

reduce the discrepancies between SR and CC yields. Another correlate of yield overestimation is the

enumerator assessed damage on the crop cut, indicating that farmers underestimate the effect on yields

of the various damages that their plots may have been subject to during the growing season. More

attention should be paid to the further piloting and potential inclusion of related questions in future

surveys. Finally, plot managers (also more likely to be the respondents) who are literate have less

tendency to overestimate their production, even with a higher number of plots cultivated, underscoring

the need to work with literate respondents.

The analysis of the correlates of [log SR − log CC] provides evidence that there is NCME in SR

yields and NCME is negatively correlated with plot size and positively correlated with seed and labor

inputs per hectare. From a policy standpoint, this implies that the returns to input intensification will

be overestimated if SR yields are used instead of their CC counterparts. In other words, the systematic

measurement errors in SR yields may be driving up the relationships between yields and inputs, and

these relationships may in fact be artifacts of the data. We investigate these assertions analytically in

the next section.

3 Assessing the relationship between yields and inputs

3.1 Analytical framework

This section attempts to assess how the errors in SR yields, in comparison to CC yields, affect the

characterization of the relationships between land productivity and agricultural inputs, namely land

area, seeds and household labor. We start out with the analytical framework proposed by Abay et al.

(2019). The estimated yield input relationship is:

13This assumes that measurement errors in inputs are not correlated with SR too. We come back to this assumption
later in the paper.
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Table 3: Regression results of errors in yields against ML selected correlates of measurement errors in yields

[log SR− log CC]
OLS IV

Household labor 0.191∗∗∗ 0.173∗∗∗

(0.040) (0.043)
Plot area −0.259∗∗∗ −0.286∗∗∗

(0.092) (0.096)
Seeds 0.148∗ 0.148∗

(0.087) (0.082)
Unit SR harvest −0.121∗∗∗ −0.122∗∗∗

(0.038) (0.038)
*Respondent v1 : female 1.433∗∗∗ 1.410∗∗∗

(0.424) (0.431)
*Respondent v1 : manager 0.415 0.433

(0.356) (0.372)
*Respondent v2 : age 0.012∗∗∗ 0.012∗∗∗

(0.004) (0.004)
*Respondent v2 : female 0.0003 0.0004

(0.016) (0.016)
*Respondent v2 : manager −0.096 −0.095

(0.525) (0.534)
Dammage crop-cut 0.169 0.159

(0.192) (0.199)
Respondent literate x # plots of Hh −0.063∗∗∗ −0.063∗∗∗

(0.024) (0.024)
Rain fall - July 0.005 0.005

(0.004) (0.004)
Rain fall - December 0.001 0.003

(0.029) (0.029)
Number of cotton plots −0.121∗∗∗ −0.132∗∗∗

(0.046) (0.046)
Pre-harvest loss −0.008∗∗∗ −0.008∗∗∗

(0.002) (0.002)
*Respondent v1 : age 0.012 0.011

(0.015) (0.015)

Enumerator Fixed effect? Yes Yes
Observations 577 577
R2 0.301 0.302
Adjusted R2 0.256 0.256

Notes: Labor, plot area and quantity of seeds are in log form. In the second
column, household labor is instrumentalized with household size. * indicates
that the variable is interacted with enumerator fixed effect. v1 indicates post-
planting visit and v2 indicates post-harvest visit. Enumerator fixed effect
included and errors clustered by enumerator. Significance levels: *p<0.1;
**p<0.05; ***p<0.01
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Y ∗ −A∗ = β∗(X∗ −A∗) + ε (1)

where ε is mean zero and uncorrelated with (X∗−A∗) and β∗ can be estimated via ordinary least squares

(OLS) regression. We consider the following type of non-classical measurement errors parameters:

• δ: correlation of the measurement errors in the yield measure with true value of yield

• λ: correlation of the measurement errors in the yield measure with the true value of input

• α: correlation of the measurement errors in input with the true value of input

• π: correlation of the measurement errors in yield with the measurement errors in the input

measures

When present, δ appears as a multiplicative attenuation bias. The remaining parameters enter in a

general formula for an OLS estimate of β∗ as following:

βOLS =
β∗(1 + α)ρx2∗

(1 + α)2ρx2∗ + ρ`2
− α(1 + α)ρx2∗

(1 + α)2ρx2∗ + ρ`2
− ρ`2

(1 + α)2ρx2∗ + ρ`2

+
λρx2∗

(1 + α)2ρx2∗ + ρ`2
+

π

(1 + α)2ρx2∗ + ρ`2

(2)

where ρx2∗ is the variance of X∗ and ρ`2 the variance of the random component of the measurement

error in X. The second and third term appear if and only if the input is present in the dependent and

independent variables as in the case of plot area. To characterize the signs of the different parameters,

we rely on the results of the regression presented in Table 3 and on Figure 2 which provides graphical

evidence of the relationship between the difference of SR and CC yields – taken to be the measurement

error in SR yields. If we assume that CC yields are the true value of yields, the difference between

SR and CC is negatively correlated with the value of CC yields (see top left panel of Figure 2). This

indicates that the sign of δ in our data is negative. The case of the measurement error encapsulated in

the parameter δ is that of attenuation bias due to measurement error in the dependent variable.

Regarding α, we note that the correlation of measurement error in our measure of plot area and

true plot size is likely to be negligible because of the accuracy of GPS handheld devices (Carletto

et al., 2017) and the large plot size in Mali. For labor, we can rely on the comparisons of recall- (as

in our survey) versus diary-based approaches to survey data collection on labor, as reported by Arthi

et al. (2018), Gaddis et al. (2020), who present evidence of overestimation in recall-based plot-level

labor hours in Tanzania and Ghana, respectively, vis-à-vis diary-based measures. As such, we expect a

negative correlation between the measurement error in labor and its true value. Finally, characterizing

α is most complicated for quantity of seeds for which we do not have a benchmark for the true value,

so we remain agnostic. Turning to λ, for plot area, we use the GPS-based measure, which can be

assumed reliably to have measurement errors that are negligibly correlated with the true measure. Top

right panel of Figure 2 indicates that the relationship is negative, so we can take λ to be negative for

plot area. Characterizing the sign of λ for labor and seed inputs is more difficult since they are based
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Figure 2: Self-Reported yield overestimation of crop-cut yield over quintiles of crop-cut yields and key
inputs. Notes: The y-axis represents the amount by which SR yields overestimate CC yields (Y = SR−CC)
in kg/ha. The x-axis shows the quintile of the crop-cut yields or of the input per ha.
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on farmer-reporting and may be subject to measurement errors that are correlated with measurement

errors in yield. However, let’s assume at first that this correlation is negligible. Having made this

assumption, interpreting Figure 2 indicates that λ is positive for these two inputs.

The bottom left panel of Figure 2 shows that in the first two quintiles of the quantity of seeds per

hectare, SR yields are slightly underestimated vis-a-vis CC yields. In the third quintile, there is no

statistically significant difference between the two yield measures. In the last two quintiles however,

the over- estimation in SR yields is large and clearly statistically different from zero. A similar trend

is observed for household labor per hectare (bottom right panel): As the number of days of household

labor per hectare increases, there is a larger extent of over-estimation in SR yields. Table 3 includes

additional evidence of the positive relationship between the errors in SR yields and the true values of

household labor and quantity of seeds. We observe positive and statistically significant signs for labor

and seeds, controlling for other drivers of measurement errors in SR yields.

Concerning labor, we note that the respondent literacy interacted with the number of plots - both

contributors to the measurement error in recall-based plot-level labor inputs, per Arthi et al. (2018)

and Gaddis et al. (2020) is among the covariates listed in Table 3. As such, it can be argued that

the regression at least partially controls for measurement errors in household labor and that λ, i.e. the

correlation between the measurement error in yields and the true value of labor inputs, is positive. Using

an instrumental variable approach, we can further augment the evidence base regarding the expected

direction of λ for labor. In the second column of Table 3, we regress the difference in SR and CC yields

on household labor days using household size as an instrumental variable for household labor. Household

size appears as a good candidate instrument for this exercise. It is directly correlated with household

labor inputs, and is easier to measure, and thus, could enable us to partial out the measurement error

in household labor. Additionally, the machine learning search for the drivers of measurement error in

yields tells us that household size is not a significant contributor to this error. After using household size

as an instrumental variable, the coefficient for labor remains positive and large. This finding provides

further support to the assumption that measurement errors in yields is positively correlated with the

true value of household labor.

Finally, we attempt to characterize π the correlation of the measurement error of yields and the

measurement error in inputs. In the case of plot area, considering that the measurement error in GPS-

based plot area is negligible, the correlation with the measurement error in yield will also be negligible.

For labor, Table 3 provides some sense of the sign of π. We can see that the correlation between

household labor and the difference between SR and CC yields is higher using a simple OLS versus an

instrumental variable regression. Hence, there seems to be a positive relationship between measurement

error in yields and measurement error in labor. At the same time, the coefficients across the two

regressions are not statistically significantly different as such π, as it is difficult to find an instrument

that allows us to partial out the measurement errors in the quantity of seeds.

Table 4 provides a summary of the conjectures put forth regarding the parameters δ, λ, α, and π.

For all inputs, δ is negative so it it exerts a negative bias on βOLS but as noted by Abay et al. (2019),

this is a multiplicative bias so it cannot reverse the sign of the relationship. The other parameters
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however appear as additive terms. In the case of plot area, the most contributing parameter is λ which

is negative. As such, we expect a negative bias, as also documented in previous studies. For labor,

λ contributes positively to the bias, π is positive and appears with a positive sign in the formula for

β0LS; and α but will contribute positively to the bias since it will make the denominator of all terms

in Equation 2 smaller, and, therefore, the multiplicative bias in the first term will go up (assuming

|α| < 1), and the bias from λ and π will grow larger. Hence, the overall bias in the coefficient β0LS for

labor is expected to be positive. Finally, for quantity of seeds, we are able to only confidently sign λ,

which would contribute positively to the bias, but based on the descriptive evidence, we expect that the

final bias will also be positive, similar to labor. We expect that this bias is essentially going to be driven

by λ i.e. the correlation of measurement error in yield with the true value of quantity of seeds. In sum,

we expect that using SR yields in estimating the relationships between yields and inputs will result in

underestimation of the returns to area and an overestimation of the returns to labor and quantity of

seeds. The next section provides an empirical assessment of this assertion.

Table 4: Characterization of the NCME parameters in the assessment of yields - input relationship.

Input δ λ α π Bias

Area ≤ 0 ≤ 0 ' 0 ' 0 Negative
Labor ≤ 0 ≥ 0 ≤ 0 ≥ 0 most likely positive
Quantity of seeds ≤ 0 ≥ 0 - - most likely positive

3.2 Empirical results

This section presents estimates of the yield - inputs relationship. We use simple bivariate regressions

as presented in the earlier section. The equation for these regressions can be written as follows:

Yi = α+ β1Ai + εi

Yi = α+ β2Si + εi

Yi = α+ β3Li + εi

We also estimate multivariate OLS regressions as is commonly done in the IR literature. Estimating

a multivariate regression allows us to alleviate omitted variables bias concerns that could be raised in

explaining the differences between the coefficients across the regressions of SR versus CC yields Desiere

and Jolliffe (2018). The multivariate model is of the form:

Yi = α+ β1Ai + β2Si + β3Li + δPi + σOi + τHi+ µMi + ϕVi + εi

In both the bivariate and the multivariate equations above, Y is the logarithmic transformation of

the plot-level sorghum yield (kilograms per hectare), based on GPS-based plot area. i denotes plot

(recall that in ERIVaS, we select one plot per household), A, S, L are respectively the logarithmic

transformation of GPS-based plot area, the logarithmic transportation of the quantity of seeds used per
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hectare, the logarithmic transformation of the number of days of household labor per hectare. P is a

vector of plot characteristics including inputs other than seeds and household labor, O is a vector of

objective measures of plot characteristics (including geospatial variables). H is a vector of household

characteristics, M is a vector of plot manager characteristics. V is a vector of dummy variables for

villages (village fixed effects) and εi the error term.

The coefficients of interest are the β’s. A negative and statistically significant β1 would be in support

of the inverse scale-productivity relationship at the plot-level. A positive and significant β2 would

indicate that increasing the quantity of seeds per hectare is correlated with higher yields, suggesting

that one the potential way to increase yield is to increase the quantity of seeds per hectare. Finally

a positive and significant β3 would indicate that more labor per hectare could potentially increase

yields. From a policy perspective, a negative β1, and positive β2 and β3 plead in favor of agriculture

intensification to improve yields.

Our empirical analysis confirms our expectations, as presented in the preceding section. Table

5 presents the regressions coefficients of key agricultural inputs, as obtained from the bivariate and

multivariate regressions of SR and CC yields. The IR is always confirmed when using SR yields, with a

statistically significant negative coefficient associated with plot area. More specifically, it appears that

a 1 percent increase in GPS-based plot area results in a .2 percent reduction in sorghum yield. The

relationship disappears, however, when using CC yields.

Table 5: Regressions results of SR and CC measures of yields for selected inputs

Measures of Yields
SR CC SR CC SR CC SR CC

GPS measured plot area −0.268∗∗ 0.138 −0.304∗∗∗ −0.045
(0.109) (0.122) (0.085) (0.099)

Quantity of Seeds 0.574∗∗∗ 0.051 0.366∗∗∗ 0.185∗∗

(0.128) (0.139) (0.068) (0.086)
Days of household Labor 0.417∗∗∗ 0.078∗∗ 0.159∗∗∗ −0.040

(0.058) (0.033) (0.058) (0.045)

Multivariate Framework? No No No No No No Yes Yes
Village Fixed effects? No No No No No No Yes Yes
Observations 577 577 577 577 577 577 577 577
R2 0.033 0.009 0.081 0.001 0.144 0.005 0.443 0.424
Adjusted R2 0.031 0.007 0.079 −0.001 0.143 0.003 0.391 0.371

Notes: Errors clustered at the enumeration area. Dependent and Independent variables shown here are log trans-
formed. Full multivariate regression results are shown in Table A3 Significance levels: *p<0.1; **p<0.05; ***p<0.01

In sum, assuming that CC yields do not suffer from NCME, the errors in SR yields create spu-

rious relationships between yields and key inputs in the context of smallholder farmers. The policy

implications of these results are very concerning if agricultural initiatives are to be motivated by the

analysis of these relationships. In fact, examining the full regression results in Table A3, it is striking

how sensitive our estimations are to whether we use SR or CC yields. Using SR yields, plots with more

intensive input use have higher yields, suggesting that the focus should be on agricultural intensification
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and a broader access to or provision of seeds. Although the relation is still positive when using CC

measure, the magnitude is considerably different - doubling the seeding rate would increase SR yields

by 37 percent while it would only increase CC yields by 19 percent. For household labor inputs, the

analysis based on SR yields points to the yield gains associated with increased labor inputs per hectare,

suggesting a certain level of misallocation of labor across households. This suggestion, however, does

not emerge if the analysis is anchored in CC yields.

These results emphasize the need for adopting objective measurement of production, specifically

crop cutting, in household and farm surveys. The adoption of these methods would undoubtedly

require additional technical and financial resources, and in the case of national surveys, could present

considerable logistical challenges. In these circumstances, it is worth investigating whether crop cutting

can be implemented in a sub-sample, with the intention to build an imputation model of CC yields as

a function of easier-and-cheaper-to-collect self-reported and geospatial data, and to obtain, in the rest

of the sample that is not subject to crop cutting, predicted CC yields that are subject to attenuated

NCME and that allow for a less biased assessment of the relationships between yields and inputs. This

is what is attempted in the second part of this analysis.

4 Estimating the relationships between yields and inputs

using machine learning-based imputed crop cut yields

This section provides an analytical framework on how the production function coefficients associated

with agricultural inputs are expected to be modified as a result of using machine learning-based imputed

crop cut yields (henceforth referred to as ML yields) vis-à-vis CC and SR yields. This is followed by

the presentation of the empirical results from the regressions of SR, CC and ML yields, verifying the

predictions stemming from the analytical framework.

4.1 Analytical framework

Recall that we are interested in estimating:

Y ∗ −A∗ = β∗(X∗ −A∗) + ε

Where Y ∗ is the log of production measure and X∗ is the log of any explanatory variable of concern

(labor, quantity of seeds used) and A∗ is area. We do not observe the true value of Y ∗ nor X∗ and

A∗ but we set aside measurement errors in X and A and focus on the measures of Y ∗. We observe in

the data Y CC , which is obtained from the enumerator weighted harvest on subplot crop cut and Y SR

which is obtained from the farmer self-reported production. We can write both measures in terms of

the true Y ∗ as :

Y CC −A∗CC = Y ∗ −A∗ + uCC (3)

Y SR −A∗ = Y ∗ −A∗ + uSR (4)
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Where A∗CC is the size of the crop cut subplot. In the case of Y CC , uCC is uncorrelated with X∗ (the

crop cut harvested weight is on a randomly chosen pre-delimited subplot, so there are no reasons to

think that it will have measurement errors correlated with the measure of labor or quantity of seed,

area). In that case, the measurement error in Y CC would not contribute to a bias in β∗.

Turning to production obtained through self-reporting Y SR, we documented earlier that uSR is subject

to non-classical measurement error. Thus, we take uSR = λ(X∗−A∗)+ζ and expanding and simplifying

the equation leads to βOLS = β∗ + λ.

We introduce YML − A∗CC which is yield predicted using a machine learning algorithm. For

simplicity in derivation, we consider that Y SR −A∗ is a linear term and express YML −A∗CC as:

YML −A∗CC = γ(Y SR −A∗) + F (W) + w

= γ(Y ∗ −A∗ + uSR) + F (W) + w

Where W is a vector of covariates that is used to predict yield not including X∗. So we end up with:

YML −A∗CC = γ(Y ∗ −A∗) + F (W) + (γuSR + w) (5)

Estimating Equation (1) using YML −A∗CC and expanding with Equation (5), we get that:

βOLS =
Cov(YML −A∗CC , X∗ −A∗)

Var(X∗ −A∗)

=
Cov(γ(Y ∗ −A∗) + F (W) + (γuSR + w), X∗ −A∗)

Var(X∗ −A∗)

=
Cov(γ(Y ∗ −A∗) + F (W) + (γ(λ(X∗ −A∗) + ζ) + w), X∗ −A∗)

Var(X∗ −A∗)

(6)

By linearity, we can split the last line of the precedent equation in 4 terms (each on one line in the

equation below):

βOLS =
Cov(γ(Y ∗ −A∗), X∗ −A∗)

Var(X∗ −A∗) +

Cov(F (W), X∗ −A∗)
Var(X∗ −A∗) +

Cov(γλ(X∗ −A∗), X∗ −A∗)
Var(X∗ −A∗) +

Cov(λζ + w,X∗ −A∗)
Var(X∗ −A∗)

(7)

The first term simplifies to γβ∗. The second term can be written as ηβ∗ since F (W) is a predicted

measure of Y ∗ uncorrelated with (X∗ − A∗), we can assume that it will have some noise bringing an

attenuation bias η in the estimation of the OLS coefficient. The third term simplifies to γλ. The last

term Cov(λζ+w,X∗−A∗) goes to 0 since λ is a constant, and ζ assumed to be uncorrelated to X∗−A∗.

Similarly, since W does not include input variables, w is not correlated to X∗−A∗. So we end up with:

βOLS = (γ + η)β∗ + γλ (8)
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According to Equation (8), using a predicted measure of crop cut, we will be estimating β∗ with an

attenuation bias coming from the noise of the ML algorithm which will also contribute to attenuate the

bias induced by the SR measure of yield.

4.2 Empirical application

To test empirically whether it is judicious to use machine learning techniques to construct an alternate

measure of crop yields based on a sub-sample of plot observations for which both crop cut and self-

reported crop production data are available, we use the data from the ERIVaS 2017 experiment, which

allows us to compare ML-predicted crop cut yields to their observed counterparts. Using data from a

more controlled methodological study also ensures that the crop cut data are of the highest quality.

A potential disadvantage, on the other hand, is that because the data are from a localized setting, it

may be less heterogeneous, which could make it harder to accurately predict each observation. Our

experimental protocol is as follows. First, we randomly select one-third of the observations in each

ERIVaS village to construct a pooled data set to train the ML algorithm. The reason why we choose

one-third of the observations to be part of the training data set is to mimic the extent of crop cutting

conducted in the nationally-representative multi-topic household surveys that have been supported by

the World Bank LSMS-ISA program. The remaining two-thirds of the data set serves as our test sample

in which we compare the predicted yield measures obtained with ML against those based on farmer

self-reporting and crop cutting, with the latter assumed to be closest to the “truth”. The statistics tied

to this comparative assessment are computed over 100 simulations of training and test sample splits

to ensure that are conclusions are not the result of one random realization, although in some parts of

this subsection, we may present the results for one realization for better illustration purposes. Second,

since our goal is to investigate whether the ML-based predicted crop yields are suitable for the analysis

of the relationship between yields and key inputs, we estimate the relationships of interest in the test

sample using the most “accurate” modeling set up and compare the resulting regression coefficients to

the ones that are estimated with SR and CC yield measures.

4.2.1 Machine learning modeling

We use an ensemble of methods14 (LASSO, elastic-net, random forest, and gradient boosted trees)—

a standard and popular machine learning technique— to generate yields predictions. We test the

sensitivity of our estimation to the choice of the dependent variable (CC yields, CC harvest, in log or

raw forms), and whether or not the predictors include SR yields. While the full technical details of the

machine learning implementation are provided in section B of the Appendix, we discuss here the choice

of the covariates considered for ML modeling.

On the whole, we fed the ML algorithms a set of 270 covariates across the following categories: (i)

plot characteristics that exclude key plot inputs15 but that include predictors related to land tenure, soil

14The technique is implemented using the R package SuperLearner (Polley et al., 2018).
15Since we will regress yields obtained using ML on key inputs, we do not include these variables in the set of ML

covariates to ensure that the regression coefficients are not a mere mechanical result of the ML prediction model.
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type, soil fertility measures, GPS-based Euclidian distance to the dwelling, (ii) plot-level agroclimatic

and rainfall variables that are extracted based on georeferenced plot locations, (iii) plot-level agricultural

practices, such as sowing dates and type of labor inputs, interacted with rainfall measures, (iv) household

attributes, such as agricultural implement index, wealth index, and a series of household demographic

attributes as well as socioeconomic characteristics of the head of household, and (v) other contextual

information, including respondent attributes, day of visits to the households, and damage on crop cut

sub-plots (as observed by the enumerators).

It is generally difficult to interpret the results of ML modeling, given the complexity of the algo-

rithms, but we can get an insight on how the prediction of yields is made by examining the variables

kept by the shrinkage algorithms or the importance of the random trees or forest algorithms. For illus-

tration, Table 6 shows the result of the ML ensemble fit for the first sample split simulation when we

fit the log CC and include log SR among the covariates. The fit that minimized the root mean squared

error after cross-validation in the training sample was made with a weighted linear combination of a fit

by LASSO, random forest and gradient boosting trees. The variables selected by LASSO are the log of

SR and the enumerator assessed damage on the crop-cut. This makes sense as we expect SR yield to

be a strong (although biased) proxy of CC yield. It is not surprising either that enumerator assessed

damage on the crop cut appears as an important predictor since it allows to classify plots for which the

harvest was completely lost. While these two variables are also important covariates for the random

forest and gradient boosting trees algorithms, we also observe that farmer management practices, the

interactions of input timing and amount of rainfall, and farmer access to agricultural equipment appear

as top predictors of yields. Hence, the imputation approach allows the analyst to leverage the predictive

power of SR yields, which has correlated measurement error, together with the predictive power of other

determinants of yields, which suffer from less measurement error, to obtain an imputed measure of CC

yields that would therefore have less NCME. We now turn to the assessment of the accuracy of the ML

measure of yields.

4.2.2 Accuracy of the ML measure yields

To understand which ML modeling set up gives the most accurate measure of yields, we compare

the different ML predictions to CC yields in the test set using the adjusted R2 and the coefficient of

correlation (ρ) between CC yields and the ML yields. To ensure that the assessment is not only the

reflection of one random draw of the sample, we conduct this assessment with 100 different sample

splits. The results are recorded in the top panel of Table 7. A couple of points emerge from examining

this section of the table. First, predicting yields provides better results over predicting harvest. This

makes sense since the dependent variable, CC is a method conceived to measure yields in the first place.

Second, adding SR among the covariates considerably improves the accuracy of the ML predictions,

indicating that it is a useful proxy of CC in our model. Third, it is better to estimate the model with

the log-transformed dependent variable even when observed and predicted yields are compared in level

terms. Therefore, we conclude that our best modeling set up is to fit the log-transformed CC yields

including SR measure in the covariates.
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Table 6: Machine Learning algorithm ensemble fit for the first sample split simulation. For illustration, we
show the linear fit coefficients or predictive importance of selected variables for each ML algorithms chosen
in the ensemble fit.

LASSO Random forest Gradient boosting trees

log SR yield 0.190 35.628 0.132
Enumerator reported damage on the crop-cut −0.011 22.164 0.0001

Farmer reported percentage of crop loss on plot 0 9.744 0.0001
Agricultural implementation index 0 8.963 0.002

Village dummy 0 5.701 0
Plot acquisition type 0 0.414 0.085

Sowing date 1st half June x rain fall 1st half June 0 0.269 0.131
Sowing date 1st half June x rain fall 2nd half May 0 0.158 0.132

Plot is owned by household 0 0.103 0.131

Notes: The ML model set up used log CC yield as the dependent variable and the covariates included log SR yield.
The ML ensemble fit for the first sample split simulation comprised the predictions of LASSO (weight = 0.594),
random forest (weight = 0.273), and gradient boosting trees (weight = 0.133). We show the variables selected (with
non-zero coefficient) by LASSO and the top 5 most important variables in terms of predictive power for random
forest and gradient boosting trees.

To put the accuracy of our ML measure in perspective in context, we also show the R2 and ρ for

SR and crop cut-calibrated satellite yields, which we obtained from Lobell et al. (2019). These results

are consigned in the bottom panel of Table 7. Our ML-based imputed CC yields, in comparison to SR

yields, explains unambiguously more of the variation of in CC yields, and even more impressive finding

is that the R2 and ρ of the are on-par with that of the CC-calibrated satellite yields.

4.2.3 Empirical assessment of the yields and inputs relationship using pre-

dicted yields

We replicate bi-variate and multivariate regressions of yields as a function of key inputs, with competing

measures of yields, including SR, CC and ML yields. We use our preferred model specification of ML in

the first sample split simulation in the test sample. Since we are working with predicted measures, the

standards errors for the regression coefficients are bootstrapped. Further, as a robustness check, we also

use the method introduced by Chernozhukov et al. (2018) to compute de-biased regression coefficients

and conservative standard errors when the number of control parameters is large as it is the case of the

relationships of interest between yields and key inputs.

The regression results are reported in Table 8. We note that in the test sample, the observations

that we previously made concerning the difference between the coefficients of the inputs when using SR

or CC are still valid. For example, in the multivariate case, the quantity of seeds per hectare is positively

correlated with yields but carry a stronger coefficient when the yield measure is SR, as opposed to CC.

The regressions based on ML yields yield new findings. The coefficients obtained with ML yields are

similar to the ones obtained with CC yields and the coefficient pairs are not statistically distinguishable,

irrespective of the agricultural input in question. This is better seen in the bottom panels of Figure
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Table 7: Performance of different ML modeling set-ups for predicting log yields in the test set over 100
different training - test sample splits.

log Yields

R2 ρ

Dependent Variable Covariates include SR
log Yields Yes 0.401 0.633

[0.392, 0.409] [0.627, 0.640]
log Yields No 0.307 0.554

[0.298, 0.316] [0.546, 0.562]
log Harvest Yes 0.242 0.492

[0.233, 0.251] [0.483, 0.501]
log Harvest No 0.106 0.324

[0.100, 0.113] [0.313, 0.336]
SR 0.294 0.543

[0.286, 0.301] [0.535, 0.550]
Satellite Yields 0.135 0.370

[0.131, 0.140] [0.364, 0.376]

Notes: R2 is the adjusted R2 of the regression of CC and the corresponding measure of yields. ρ is the correlation
between CC and the measure of corresponding measure of yields. We report the average R2 and ρ in the test set (N
= 386) of 100 test sample splits and the 95% confidence interval in brackets.

3 in which we plot the coefficients for area, quantity of seeds per hectare, and labor per hectare with

their 95 percent confidence interval, as obtained from the regressions of SR, CC and ML yields. It is

apparent from the figure that the coefficients from the regressions of CC and ML yields are statistically

equivalent. The coefficients obtained using the method put forth in (Chernozhukov et al., 2018) also

provide estimates that are equivalent to the bootstrapped ones (see bottom left panel in magenta).

Furthermore, repeating the estimation of the multivariate yield-inputs regression for the 100 sample

split simulations, we find that for all the simulations, the ML yield regression coefficient for plot area is

within the 95 percent confidence interval of the comparable coefficient from the CC yield regression. For

quantity of seeds per hectare and labor inputs per hectare, the coefficients estimated with ML measure

of yield are within the 95 percent confidence interval of the comparable coefficients from the CC yield

regression, in 96 and 80 of the simulations, respectively, out of 100. These results are illustrated on the

left panel of Figure 4. The red and green kernel density plots represent the distribution of the coefficients

when the relationship is estimated with SR and CC yields, respectively, and the blue histogram bars

represent the distribution of the comparable coefficient when the relationship is estimated with ML

yields. The middle panel of plots show the results of the regressions of ML yields that are obtained

without including SR yields among the covariates. Compared to the aforementioned results based on

ML yields, the ML yield regression coefficient for labor input per hectare is in fact more frequently

within the 95 percent confidence interval of the comparable coefficient from the CC yield regression

(compare bottom left and bottom middle density plots).

Under the assumption that the correlation of measurement error of labor with itself (α) and with

the measurement error of CC yield (π) are both negligible and that we capture an unbiased coefficient
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Figure 3: Distributions and yield-input regression coefficients for different measures of yield in the first
sample split of the test set N = 386. Notes: Left top panel shows the kernel density of the different measures
of yield. The right middle panel shows the scatter plots of CC vs ML yields. The right middle panel shows the
scatter plots of CC vs SR yields. The bottom left/right panel shows the bivariate/multivariate yield-input
regression coefficients for different measures of yield.
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Figure 4: Distribution of yields-inputs regression coefficients in the test for 100 different sample splits.
The red and green kernel density plots represent the distribution of the coefficients when the relationship
is estimated with SR and CC yields, respectively, and the blue histogram bars represent the distribution
of the comparable coefficient when the relationship is estimated with ML yields. The left panel shows the
distribution when in the machine learning model, we include SR. The middle panel of plots show the results
of the regressions of ML yields that are obtained without including SR yields among the covariates. The right
panel shows the results from the alternative regressions of ML yields which are computed with ML-based
imputed measures of CC harvest that are in turn standardized by plot area (as opposed to imputing ML
yields directly)
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for labor with the use of CC yields, these results suggest that if we suspect a high degree of correlation

between the measurement error of labor with the true value of labor, it may be better to estimate the

yield-input relationship using a predicted measure of CC yields that does not include SR yields among

the list of predictors. On the other hand, if λ is not high (as it seems to be the case with quantity of

seeds per hectare), it is better to include SR yields among the list of predictors for CC yields. In any

case, it is always better to use the ML yields rather than SR yields. Finally, the right panel of Figure

4 shows the results from the alternative regressions of ML yields which are computed with ML-based

imputed measures of CC harvest that are in turn standardized by plot area (as opposed to imputing

ML yields directly). We can see that the coefficients associated with the key inputs are not estimated

correctly - especially for plot area. This confirms that deriving ML-based imputed CC yields, as opposed

to CC harvests, is the most appropriate.

To further confirm that the use of ML yields de-biases the estimation of the relationships between

yields and inputs, we estimate regression, as presented in Table 3, using the test sample and both SR

and ML yields. The results are presented in Table 9. First, inputs do not correlate with overestimation

of ML(SR,W) as much as they do with SR. In fact, none of the coefficients are significant. And although

the coefficient for quantity of seeds per hectare was positive but not significant under the use of SR yields

in the test sample, it is now reversed and is no longer significant. Second, the adjusted R2 decreases

considerably which indicates that the covariates are associated to a lesser extent with the difference in

values between CC and ML yields.

4.2.4 Application on the nationally representative survey

To assess the external validity of our findings thus far, we replicate the analysis with data from the

Enquête de Conjoncture Intégrée (EACI 2017) 16 a nationally-representative multi-topic household sur-

vey, spanning both rural and urban areas of Mali and with detail questionnaire modules on smallholder

agricultural activities. The households were interviewed by semi-resident enumerators in three visits,

following a fieldwork protocol that was similar to that of ERIVaS. All major crops, including sorghum,

were subject to crop cutting during the EACI fieldwork, and the size of the randomly-placed crop

cut sub-plot on sorghum plots specifically was 5m x 5m (opposed to 8m x 8m in ERIVaS). One of

the objectives of EACI is to derive national- and regional-level estimates of total crop production and

yields. On yield measurement, plots, rather than households, are the primarily units of analysis, with

direct implications on the sampling of plots for crop cutting purposes. Specifically, in each sampled

EACI enumeration area, a complete listing of plots was conducted, and the listed plots were organized

into separate subsets in accordance with the cultivated crop (or crop combinations, in the case of in-

tercropped plots). A third of plots were then selected at random from each subset. This means that

households with more plots had a greater probability of having a plot selected for crop cutting. In the

end, we have farmer self-reported production data for about 24,000 plots of which 7,800 were subject

16The EACI 2017 is also the Mali LSMS-ISA 2017. It was built upon the Agricultural Conjuncture Survey which
is implemented yearly by the Statistical Unit of the Ministry of Agriculture. For the 2017 edition, living conditions
modules were added on a subsample as part of the Mali LSMS-ISA project.
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Table 9: Regression results of errors in yields against correlates of measurement errors in yields

Measurement Errors in Yields

log SR- log CC log ML - log CC

Household labor 0.210∗∗∗ 0.028
(0.042) (0.061)

Plot area −0.283∗∗∗ −0.169
(0.106) (0.104)

Seeds 0.087 −0.123
(0.105) (0.131)

Unit SR harvest −0.076∗∗ −0.003
(0.034) (0.035)

*Respondent v1 : female 1.733∗∗∗ 1.903∗∗∗

(0.455) (0.381)
*Respondent v1 : manager 0.519 0.376

(0.359) (0.430)
*Respondent v2 : age 0.015∗∗∗ 0.010∗∗

(0.005) (0.005)
*Respondent v2 : female −0.017 −0.0005

(0.016) (0.015)
*Respondent v2 : manager −0.331 −1.266∗∗∗

(0.449) (0.409)
Dammage crop-cut 0.160 −0.567∗∗

(0.175) (0.242)
Respondent literate x # plots of Hh −0.083∗∗∗ −0.031∗

(0.018) (0.016)
Rain fall - July 0.003 0.004

(0.003) (0.004)
Rain fall - December 0.046 −0.005

(0.033) (0.037)
Number of cotton plots −0.061 −0.058

(0.069) (0.044)
Pre-harvest loss −0.010∗∗∗ −0.0004

(0.003) (0.002)
*Respondent v1 : age −0.008 −0.007

(0.016) (0.015)

Observations 386 386
R2 0.361 0.150
Adjusted R2 0.297 0.065

Notes: Estimation conducted in the test sample of the first sample split simulation.
Labor, plot area and quantity of seeds are in log form. * indicates that the variable
is interacted with enumerator fixed effect. v1 indicates post-planting visit and v2
indicates post-harvest visit. Enumerator fixed effect included and errors clustered
by village. Significance levels: *p<0.1; **p<0.05; ***p<0.01
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to crop cutting. Focusing on sorghum, EACI collected data on 3,569 plots of which 1,098 were subject

to crop cutting.

We start this part of the analysis by comparing the data from ERIVaS and EACI. This provides

clues regarding the potential modifications, if any, in the parameter estimates for the relationships

between yields and inputs when we extend our analysis to a nationally-representative survey. Table 10

shows summary statistics for pure stand sorghum plots on in ERIVaS and EACI samples.17 We see

that the measures of yields and inputs are statistically different between the two surveys. The mean

value in EACI is often larger, and as can be observed on Figure A2 in the Appendix, the amplitude is

often greater for the inputs. The latter finding reflects the fact that EACI covers the entire country and

captures more heterogenous farming practices and outcomes. This may in turn be beneficial for the use

of ML techniques to derive imputed CC yields, since these algorithms work best with more observations

and are more adapted to handle potential heterogeneity across units of observations.

Table 10: Sample summary statistics of ERIVaS and EACI 2017.

Variable Sample Mean Std.Dev Min Median Max Obs.
SR Yields ERIVaS 636.86 822.26 0.00 400.00 8139.45 577

EACI 2017 536.70 874.18 0.00 317.89 9523.81 3237
***

CC Yields ERIVaS 500.68 380.06 0.00 423.44 2472.50 577
EACI 2017 760.19 482.30 0.00 720.00 3200.00 980

***
GPS measured area (ha) ERIVaS 1.56 1.25 0.05 1.20 12.02 577

EACI 2017 2.65 2.49 0.02 1.94 17.83 3237
***

Quantity of Seeds used (kg/ha) ERIVaS 8.30 5.90 0.56 6.56 51.02 577
EACI 2017 13.38 42.57 0.00 5.57 1300.00 3237

***
Household labor on plot (persons-days/ha) ERIVaS 159.30 267.37 8.36 76.40 2711.45 577

EACI 2017 69.03 146.20 0.54 34.04 2700.00 3237
***

Notes: To ensure comparability of the variables, the EACI 2017 sample is limited to pure stand plots. The stars
below the sample mean values of the two surveys denote the statistical significance level for a t-test comparison of
the means in the two samples. Significance levels: *p<0.1; **p<0.05; ***p<0.01

.

In terms of the non-classical measurement errors that were uncovered in the ERIVaS data, similar

patterns emerge from the EACI sample. Table 11 shows the means of alternative yield and harvest

measures for pure stand and intercropped sorghum plots. Similar to ERIVaS, the mean differences

between SR and CC measures are statistically significant. However, in the nationally-representative

sample, the sign of the difference is opposite and we find that the mean SR yields are underestimated

vis-à-vis CC yields (i.e., SR - CC < 0). Figure 5 allows us to better understand why this is the case by

showcasing the mean difference between SR and CC yields across quintiles of plot area, quantity of seeds

per hectare and days of household labor per hectare. SR yields are overestimated vis-à-vis CC yields in

the first plot area quintile, while, in each of the remaining quintiles, SR yields are underestimated. On

17An expanded set of descriptive statistics computed with both samples can be found in Table A4.
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the other hand, SR yields are underestimated vis-à-vis CC yields in each of the first four quintiles of

quantity of seeds per hectare and days of household labor per hectare and are conversely overestimated

in the top quintile.

Table 11: Comparison of plot-level measures of sorghum yield and harvest in EACI 2017

Yields (Kg/Ha) Harvest (Kg)
All Pure-stand Intercropped All Pure-stand Intercropped

Means
SR 574.6 561.1 687.1 970.6 950.8 1135.1

(27.2) (28.0) (101.0) (43.6) (44.1) (174.3)
CC 757.0 760.2 730.5 2037.1 2052.9 1906.5

(14.5) (15.4) (42.5) (85.9) (91.9) (237.6)
Difference in Means
SR vs CC -182.4*** -199.1*** -43.4 -1066.5*** -1102.0*** -771.4***

(29.1) (30.3) (99.5) (77.9) (84.1) (193.9)
Difference in Distribution
SR vs CC *** *** *** *** *** ***

Notes: Distributional differences are assessed using the Kolmogorov-Smirnov two-sample test

Significance levels: *p<0.1; **p<0.05; ***p<0.01

The differences in the graphs based on ERIVaS versus EACI samples are due, in part at least, to

the differences in the distributions of the input variables. For example, the mean SR-CC difference in

the third quintile of plot area in EACI is equivalent to the mean difference in the fourth quintile in

ERIVaS, so the underestimation trend that we observe in ERIVaS starts earlier in the distribution for

EACI 2017. However, the direction of the correlation between the SR-CC difference and the quantity of

inputs per hectare are the same in both ERIVaS and EACI samples. As such, it is not surprising to see

in Table 12 that the coefficients of the bivariate and multivariate regressions of yields and inputs change

significantly based on whether we use SR versus CC yields in the EACI data, but that the changes are

fully consistent with the findings based on the data from the methodological experiment.

Furthermore, while we do not have concerns regarding measurement errors in CC yields in the

ERIVaS data set due to (i) strict supervision of activities related to crop cut sub-plot placement,

harvesting and weighing, and (ii) comprehensive quality control measures applied to the incoming data

throughout the fieldwork, there is reason to believe that the EACI crop cutting operations were not

implemented as successfully. Figure 6 shows a scatterplot of SR and CC yields in the EACI data set and

there is evidence of rounding errors in CC yields. Assuming that these errors are not correlated with the

measures of inputs,18 this would mostly create an attenuation bias in the coefficients for the respective

inputs in the regressions of CC yields and could, therefore, explain in part the zero coefficients in Table

12. This finding underscores the need of quality (but still scalable) digital measurement devices when

objective measurement is the goal.19

18We created a variable indicating whether an observation was rounded and it appears not to be associated with
the value of the key inputs we study here. A close look at this issue is left to future work.

19In fact, discussion with CPS/SDR confirmed that during this round, the survey enumerators relied on scales
which lacked accuracy and were scheduled to be replaced.
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Figure 5: Self-Reported yield overestimation of crop-cut yield over quintiles of crop-cut yields and key
inputs. Notes: The y-axis represents the amount by which SR yields overestimate CC yields (Y = SR−CC)
in kg/ha. The x-axis shows the quintile of the crop-cut yields or of the input per ha. We are restricted to
the plots with crop-cut
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Figure 6: Distribution of SR vs CC yield (EACI sample)
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Nevertheless, we replicate the ML approach, as outlined in section 4.2.1, with the nationally-

representative EACI sample. Figure 7 summarizes the results for the first sample split out of the

100 replications. The right top-panel shows that ML yields 40 percent of the variation in CC yields,

and the level of explained variation is in fact higher than the comparable result based on the ERIVaS

sample. Even though we continue to see (in the left-top panel) a higher concentration of values around

the mean for ML yields, there is a better tracking of the large values of CC yields. The coefficients for

the key inputs in the regressions of ML yields are also comparable to those obtained from the regressions

of CC yields, as shown in the bottom two plots of Figure 7. While the size and heterogeneity of the

EACI sample are among the factors that improve the predictive accuracy of the ML model vis-à-vis the

results achieved with the ERIVaS sample, the EACI rounding errors in CC yields may also be creating

a scenario that ML tools are better equipped to accommodate.

To verify whether we can expect the same results from the ML approach done with ERIVaS (selecting

randomly a third of the plots) using the EACI 2017 and make inferences to the population of sorghum

plots in Mali, we compare in Table A5, plots and households characteristics of plots selected for crop

cutting with those that were not. The statistically significant differences appear to be seldom providing

confidence that the selection of plot for CC is analogous to the simulation conducted with the data from

the experience.

Finally, Table 12 reports the results from the yield regressions estimated with ML, and separately

SR, yields using the entire EACI sample, and the results from the yield regressions estimated with

CC yields using the sub-sample of EACI plots that were subject to crop cutting. The coefficient for

plot area is negative but not statistically significant. This may be because the mean difference in plot

area between the crop cut plots and the rest of the sample was statistically significant. The plots that

were not subject to crop cutting were, on average, larger, and in view of the evidence regarding the

underestimation in SR yields on larger plots, the IR is weakened when the regression is estimated using

the entire sample. And while the coefficients for key inputs are consistently positive and statistically

significant in the regressions of SR yields, the comparable coefficients in the regressions of ML yields are

not statistically significant and are consistent with those estimated in the regressions of CC yields. These

results are fully consistent with the findings based on the ERIVaS data set and raise flags concerning

the analyses conducted with SR yields.

5 Implications for crop yield measurement in household

and farm surveys

Having demonstrated the promise of the use of ML to derive imputed measures of CC yields, this section

provides a few recommendations on what data to collect and how to collect it in an efficient way.

First, given the importance of using SR yields to improve the quality of the ML-based imputed

CC yield predictions, survey practitioners should continue to collect farmer-reported information on

crop production, and reduce NCME in the resulting data, including by reducing length of farmer recall

and improving the completeness and quality of conversion factors for non-standard measurement units,
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Figure 7: Distributions and yield-input regression coefficients for different measures of yield in one sample
split N = 732. Notes: Left top panel shows the kernel density of the different measures of yield. The
right middle panel shows the scatter plots of CC vs ML yields. The bottom left/right panel shows the
bivariate/multivariate yield-input regression coefficients for different measures of yield.
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among other measures.

Second, in view of the complex logistics, supervision requirements, and ultimately higher costs

associated with crop cutting, the question is whether crop cutting can be implemented on a sub-sample

basis and if so, the minimum share of plot observations that should be subject to crop cutting in a way

that allows us to estimate an imputation model that provides reliable measures of imputed CC yields.

We assessed the predictive accuracy of our preferred ML specification with different sizes of the training

data set - experimenting with 10, 20, 25, 50, 67, and 75 percent of the crop cut measures, while leaving

the remaining sample in each scenario to be the test sample. It appears (see top panel of Figure 8) that

conducting crop cutting on 50 percent of the plot observations may be sufficient for deriving reliable

imputed CC yields. After the 50 percent mark, the gains in accuracy appear to be marginal.

Third, a related question is whether it is necessary to randomly designate a share of plot observations

for crop cutting in all primary sampling units or whether reliable predictions can be obtained by working

with a subsample of primary sampling units and conducting crop cutting on all plots in the designated

areas. Since ML algorithms can perform well out of sample, logistics and supervision of crop cutting

can potentially be simplified by limiting our footprint to fewer areas in a given country. To answer this

question, we create an alternative training data set composed only of crop cut measures obtained in

one randomly chosen ERIVaS stratum – as opposed to working with one-third of plots randomly chosen

across all strata. The test sample in this case are composed of plot observations from the remaining

ERIVaS strata. The bar plot in the bottom left panel of Figure 8 shows that the choice of the stratum

has an important effect on the accuracy of the ML measure. The choice of the first stratum as the

source of the training data results in an the R2 value of 0.24 from the bivariate regression of observed

CC yield against imputed CC yield in the test sample. The comparable R2 estimate is 0.04 while

working with the fourth stratum as the source of the training data. The reason behind these differences

in performance might be the fact that the first stratum was the most heterogeneous unit in terms of

CC yields: the kernel density of CC yields is more spread out within the first stratum vis-à-vis the rest

of the strata (see bottom right panel on Figure 8).

So, in view of national surveys that may consider implementing crop cutting on a sub-sample basis

and deriving imputed CC yields for the rest of the sample, the findings imply that implementing crop

cutting in a way that is confined to a particular region may only result in reliable predictions if the

chosen region is sufficiently heterogenous in terms of crop yields.
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Figure 8: Sampling strategies for optimal ML predictions. Notes: The top panel shows the R2 of there-
gression of CC on ML as a function of the training set size. We repeated the operation 50 times foreach
sample size, so each point is the mean of the R2 and the bars are the standard errors. The bottom panel
illustrates how sampling unit choice afffects the out of sample R2. The bottom right panel shows the kernel
density of the crop-cut yields in each sampling unit. For all simulations, we use the preferred ML model set
up specification: we fit the model using log CC and include SR in the covariates.
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6 Concluding remarks

This paper attempts to increase the reliability of assessments of yield-input relationships when yields

based on self-reported survey data on crop production are subject to non-classical measurement errors.

We show analytically and empirically that it is possible to construct imputed measures of objective crop

cut yields, using a machine learning model and a sub-sample of plot observations with both crop cut and

self-reported yield measures in a household survey. The imputed crop cut yields are shown to be less

biased vis-à-vis self-reported yields, and the errors in the imputed measures are uncorrelated with input

use per hectare. As such, the regressions of imputed crop cut yields replicate the true relationships

between yields and inputs that are estimated with observed crop cut yields. These conclusions are

robust to whether we use the data from a small-scale methodology study conducted in southwestern

Mali or a nationally-representative survey.

From a data collection point of view, these findings carry the implications that more objective

methods of collecting crop production data need to be integrated in the protocol of household surveys.

We rely on two household survey data sets from Mali with the rare characteristic of having both

self-reported and crop cut data. The first data set from a methodological experiment enables us to

empirically show that it is possible to combine self-reported yields data to judiciously predict crop cut

yields and, thus build a measure of yields that appears to be fit for a correct assessment of the relationship

between yields and inputs with a random sample representing one-third of the entire sample. The second

data set, a nationally representative survey, enabled us to validate the approach but also served as a

stark reminder that even when a data collection method is theoretically objective, execution is key

to ensure that meaningful inference can be made based on it. Although these results are promising,

further work considering other crops should be pursued to improve the machine learning predictions,

evaluate the limit of the inferences that can be carried out using this approach, and better understand

its potential bias reducing properties.

Finally, our analysis expands on the body of work related to non-classical measurement errors and

its impact on agricultural policy analysis in a smallholder context. We show that measurement errors

in self-reported yields are correlated with major factors of production in smallholder farming systems.

On land; the factor that has been the focus of the recent literature regarding the study of the inverse

scale-productivity relationship (Desiere and Jolliffe, 2018; Abay et al.,2019; Gourlay et al.,2019), our

results corroborate the existing evidence that IR disappears and is even reversed when the relationship

is assessed with crop cut yield as opposed to self-reported yields. We also examine the relationships

between yields and seeds per hectare and yields and household labor per hectare. These relationships

have serious implications for agricultural policy especially as it pertains to the question of agricultural

intensification. A positive relationship between yields and quantity of seeds suggests that farmers

could improve their yields by applying more seeds and thus would provide support for making seeds

more accessible to farmers. A positive relationship between yield and household labor indicates that

plot-level land productivity could be increased with more labor, suggesting that labor is not correctly

allocated across households. But similar to what is observed in the case of plot area, we document

that measurement errors in self-reported yields are correlated with the quantity of seeds and household
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labor used on the plot and that these errors lead to spurious relationships between yield and inputs use

per hectare. We find that the positive relationship between yield and quantity of seeds is weakened or

disappears, and the positive relationship between yield and household labor ceases to exist. Although

our findings cannot be interpreted as causal and our measures of quantity of seed and labor need to be

improved, these pieces of descriptive evidence suggest that intensification may not necessarily be the

approach to follow to improve yields for smallholder farmers and that further research is needed in the

domain.
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Appendix A Additional tables, full regression results, and

figures

Table A1: Comparison of plot-level measures of sorghum yields and harvests in ERIVaS with outliers
treatment

Yields (kg/ha) Harvest (kg)

Means
SR 593.5 802.3

(24.9) (43.2)
CC 8m x 8m 500.7 794.4

(15.8) (40.0)
CC 4m x 4m 501.0 782.2

(16.8) (40.8)
Difference in Means
SR vs CC 8m x 8m 92.8*** 7.8

(24.2) (40.1)
SR vs CC 4m x 4m 92.5*** 20.0

(24.6) (42.3)
CC 8m x 8m vs CC 4m x 4m -0.3 12.2

(6.1) (11.0)
Difference in Distribution
SR vs CC 8m x 8m ***
SR vs CC 4m x 4m * ***
CC 8m x 8m vs CC 4m x 4m

Notes: Standard Errors are shown in parentheses. Distributional differences are assessed
using the Kolmogorov-Smirnov two-sample test. Statistical significance levels: *p<0.1;
**p<0.05; ***p<0.01
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Table A2: Regression results of SR yields overestimation of CC yields

Log
(
SR
CC

)
Log of GPS measured plot area −0.174∗∗ −0.231∗

(0.088) (0.119)
Log of quantity of seeds per Ha 0.260∗∗∗ 0.272∗∗∗

(0.075) (0.074)
Log of total household labor per Ha 0.195∗∗∗ 0.141∗∗∗

(0.064) (0.054)
Household did not use external labor −0.019 0.077

(0.154) (0.143)
Log of total external labor per Ha −0.023 −0.002

(0.053) (0.047)
Plot received organic fertilizer 0.092 0.097

(0.128) (0.128)
Plot received mineral/chemical fertilizer 0.151∗ 0.157∗∗

(0.078) (0.077)
Plot received pesticides 0.018 0.033

(0.072) (0.074)
Plot is owned by household 0.213 0.153

(0.199) (0.170)
Plot was left fallowed during the past 10 years 0.278∗ 0.258

(0.167) (0.181)
Farmer reported distance to the market −0.007 −0.012∗∗

(0.005) (0.005)
Agriculture Equipment Index −0.084∗ −0.113∗∗

(0.048) (0.045)
Number of plots cultivated by HH −0.024 −0.023

(0.018) (0.022)
Number of sorghum plots cultivated by farmers 0.037 0.022

(0.064) (0.064)
Number of cotton plots cultivated by household −0.138∗∗∗ −0.117∗∗

(0.049) (0.047)
Log of household size 0.074 0.082

(0.099) (0.099)
Household dependency ratio −0.025 −0.051

(0.029) (0.037)
Polygamous household −0.048 −0.041

(0.120) (0.108)
Welfare index 0.074∗∗ 0.104∗∗∗

(0.030) (0.035)
Head of household is female −0.166 −0.026

(0.163) (0.239)
Log of age of household head 0.125 0.208

(0.162) (0.198)
Household head is literate 0.324∗∗ 0.318∗∗∗

(0.128) (0.120)
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Table A2: Regression results of SR yields overestimation of CC yields - cont.

Log
(
SR
CC

)
Log of age of plot manager −0.021 −0.079

(0.104) (0.109)
Manager is literate −0.409∗∗∗ −0.398∗∗∗

(0.140) (0.145)
SR in sheafs 0.069 0.120

(0.167) (0.174)
SR in Bags −0.086 0.038

(0.094) (0.095)
SR in donkey carts −0.452∗∗∗ −0.392∗∗∗

(0.102) (0.126)
SR in ox carts −0.268∗ −0.362∗∗

(0.140) (0.175)
Enumerator assessed percent of dammage on plot 0.009∗∗∗ 0.008∗∗∗

(0.002) (0.002)
Days between CC harvest and Post Harvest interview −0.015∗ −0.018∗∗∗

(0.008) (0.007)
Respondent was plot manager during post-planting interview 0.004 0.022

(0.094) (0.095)
Respondent was plot manager during post-parvest interview 0.045 0.075

(0.076) (0.065)
CC Yield is 0 −1.168∗∗∗ −1.066∗∗∗

(0.242) (0.278)
SR yield is 0 −0.360 −0.409

(0.328) (0.352)

Enumerator Fixed effect? No Yes
Observations 577 577
R2 0.251 0.305
Adjusted R2 0.204 0.234

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A3: Full Multivariate Regressions results of SR and CC measures of yields for selected inputs

Measures of Yields
SR SR CC CC

GPS measured plot area −0.252∗∗∗ −0.304∗∗∗ −0.013 −0.045
(0.065) (0.085) (0.083) (0.099)

Quantity of Seeds 0.352∗∗∗ 0.366∗∗∗ 0.159∗∗ 0.185∗∗

(0.075) (0.068) (0.077) (0.086)
Days of household Labor 0.185∗∗∗ 0.159∗∗∗ −0.028 −0.040

(0.058) (0.058) (0.035) (0.045)
Hired labor used on plot −0.268 −0.248 −0.255∗∗ −0.246∗

(0.181) (0.203) (0.122) (0.128)
Days of hired labor −0.100 −0.087 −0.073 −0.082∗

(0.066) (0.077) (0.046) (0.048)
Organic fertilizer used on plot −0.006 −0.017 −0.068 −0.078

(0.101) (0.099) (0.084) (0.094)
Mineral/Chemical fertilizer used on plot 0.151∗∗ 0.121 −0.006 −0.031

(0.074) (0.086) (0.066) (0.074)
Pesticides used in plot 0.160∗ 0.142∗ 0.080 0.086

(0.082) (0.083) (0.076) (0.078)
Log Distance to dwelling −0.084∗∗∗ −0.072∗∗ −0.039 −0.015

(0.025) (0.032) (0.040) (0.059)
Slope of the plot (GPS) −0.133∗∗ −0.068 −0.064 −0.041

(0.059) (0.047) (0.051) (0.069)
Potential wetness index 0.006 0.009 0.007 0.007

(0.006) (0.007) (0.006) (0.007)
Plot is owned by HH 0.104 0.224 −0.373∗∗ −0.308∗

(0.166) (0.160) (0.171) (0.158)
Plot was inherited −0.067 −0.101 0.060 0.062

(0.088) (0.078) (0.082) (0.087)
Plot has erosion −0.149 −0.151 −0.045 −0.036

(0.121) (0.134) (0.098) (0.108)
Plot Protected against erosion 0.502∗∗∗ 0.501∗∗ 0.224 0.254

(0.182) (0.221) (0.210) (0.222)
Agriculture implementation index 0.025 0.003 0.139∗∗∗ 0.142∗∗∗

(0.049) (0.040) (0.041) (0.043)
Plot was not plowed 0.056 0.043 0.044 0.037

(0.054) (0.048) (0.069) (0.067)
Plot fallowed past decade −0.313∗∗∗ −0.258∗∗ −0.641∗∗∗ −0.572∗∗∗

(0.083) (0.124) (0.157) (0.150)
Number of sorghum plots 0.032 0.025 0.139∗∗∗ 0.141∗∗∗

(0.073) (0.067) (0.032) (0.031)
Number of cotton plots −0.010 −0.065∗ −0.032 −0.039

(0.054) (0.036) (0.063) (0.068)
Number of plots 0.186∗ 0.194∗∗ 0.121 0.105

(0.102) (0.089) (0.079) (0.084)

Notes: Errors clustered at the village level. Dependent and inputs Independent variables shown here are log trans-
formed. Significance levels: *p<0.1; **p<0.05; ***p<0.01
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Table A3: Full Multivariate Regressions results of SR and CC measures of yields for selected inputs - cont.

Measures of Yields
SR SR CC CC

Log Household size 0.038 0.016 0.056 0.070
(0.057) (0.065) (0.058) (0.056)

Dependency ratio 0.004 0.020 −0.077∗ −0.065∗

(0.043) (0.039) (0.041) (0.038)
Welfare Index −0.026 −0.019 −0.010 −0.012

(0.026) (0.022) (0.019) (0.018)
Log age of Head 0.034 −0.028 −0.289 −0.271

(0.124) (0.130) (0.188) (0.195)
Head is literate 0.205 0.020 −0.664∗∗ −0.709∗

(0.209) (0.213) (0.331) (0.377)
Log age of Manager −0.077 −0.074 0.179 0.170

(0.130) (0.117) (0.165) (0.172)
Manager is literate −0.360∗ −0.156 0.527∗ 0.557∗

(0.189) (0.234) (0.299) (0.324)
Dammage on plot −0.021∗∗∗ −0.019∗∗∗ −0.029∗∗∗ −0.028∗∗∗

(0.004) (0.003) (0.004) (0.003)
Sowing Early 0.084 0.029 0.059 0.022

(0.126) (0.141) (0.092) (0.107)
Sowing Late −0.644 −0.549 −0.665∗ −0.586∗

(0.504) (0.472) (0.360) (0.333)
Log Rain first half August 2.530∗∗∗ 1.781 1.737∗∗∗ 1.730∗∗∗

(0.628) (1.421) (0.532) (0.658)
Log Total amount of rain −0.181 −0.440 −2.181∗∗∗ −0.955

(1.303) (2.466) (0.676) (1.443)

Village Fixed effects? No Yes No Yes
Observations 577 577 577 577
R2 0.406 0.443 0.407 0.424
Adjusted R2 0.370 0.391 0.371 0.371

Notes: Errors clustered at the village level. Dependent and inputs Independent variables
shown here are log transformed. Significance levels: *p<0.1; **p<0.05; ***p<0.01
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Table A4: Sample summary statistics of ERIVaS and EACI 2017.

Variable Sample Mean Std.Dev Min Median Max Obs.
SR Yields ERIVaS 636.86 822.26 0.00 400.00 8139.45 577

EACI 2017 536.70 874.18 0.00 317.89 9523.81 3237
***

CC Yields ERIVaS 500.68 380.06 0.00 423.44 2472.50 577
EACI 2017 760.19 482.30 0.00 720.00 3200.00 980

***
GPS measured area (ha) ERIVaS 1.56 1.25 0.05 1.20 12.02 577

EACI 2017 2.65 2.49 0.02 1.94 17.83 3237
***

Quantity of Seeds used (kg/Ha) ERIVaS 8.30 5.90 0.56 6.56 51.02 577
EACI 2017 13.38 42.57 0.00 5.57 1300.00 3237

***
Household labor on plot (persons-days/ha) ERIVaS 159.30 267.37 8.36 76.40 2711.45 577

EACI 2017 69.03 146.20 0.54 34.04 2700.00 3237
***

Hired labor (proportion of plots) ERIVaS 0.33 0.47 0.00 0.00 1.00 577
EACI 2017 0.45 0.50 0.00 0.00 1.00 3237

***
Hired labor (persons-days/ha) ERIVaS 15.23 180.21 0.00 0.00 4195.02 577

EACI 2017 6.60 69.39 0.00 0.00 3178.39 3237

Organic fertilizer ERIVaS 0.24 0.43 0.00 0.00 1.00 577
EACI 2017 0.46 0.50 0.00 0.00 1.00 3237

***
Mineral/Chemical fertilizer (proportion of plots) ERIVaS 0.30 0.46 0.00 0.00 1.00 577

EACI 2017 0.19 0.39 0.00 0.00 1.00 3237
***

Pesticides (proportion of plots) ERIVaS 0.50 0.50 0.00 1.00 1.00 577
EACI 2017 0.13 0.33 0.00 0.00 1.00 3237

***
Household Size ERIVaS 19.14 11.79 2.00 16.00 60.00 577

EACI 2017 12.55 8.36 1.00 11.00 74.00 3237
***

HH head is Female ERIVaS 0.01 0.08 0.00 0.00 1.00 577
EACI 2017 0.01 0.10 0.00 0.00 1.00 3237

HH head is literate ERIVaS 0.08 0.28 0.00 0.00 1.00 577
EACI 2017 0.20 0.40 0.00 0.00 1.00 3237

***

Notes: To ensure comparability of the variables, the EACI 2017 sample is limited to pure stand plots.

The stars below the sample mean values of the two surveys denotes the statistical significance

of the difference between the two means: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A5: Plots and inputs usage in EACI 17 for CC and not CC sample

Variable Entire Sample No CC CC X−cc −Xcc

Yields
Self-reported Yield 563.08 546.03 600.94 −54.90
Plots Characteristics
GPS measured area (Ha) 2.53 2.60 2.37 0.22∗

Quantity of Seeds used (Kg/Ha) 13.45 13.84 12.59 1.25
Household labor on plot (persons-days / Ha) 75.75 73.45 80.86 −7.40
Hired labor (proportion of plots) 0.42 0.43 0.40 0.03
Hired labor (persons-days / Ha) 6.75 7.97 4.04 3.93∗

Organic fertilizer (proportion of plots) 0.45 0.45 0.46 −0.01
Mineral/Chemical fertilizer (proportion of plots) 0.21 0.20 0.21 −0.01
Pesticides (proportion of plots) 0.13 0.13 0.13 −0.00
Agricultural Practices
Plot is intercropped 0.10 0.09 0.12 −0.03∗∗∗

Hitched plow 0.62 0.62 0.60 0.02
Plot was fallowed in the past 10 years 0.20 0.19 0.22 −0.02
Household Characteristics
Household size 12.80 13.06 12.22 0.84
Head of HH is female 0.01 0.01 0.01 −0.00
Age of head of HH 54.47 54.59 54.20 0.40
Head of HH is literate 0.21 0.21 0.22 −0.00
Welfare Index -0.26 -0.25 -0.28 0.03
N 3569 2471 1098

Note: Statistical significance of the difference is based on T-statistics computed
using design-adjusted standard errors corrected for clustering at the enumeration area.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure A1: Kernel densities of yields (left panel) and harvests (right panel) for alternative measures of
production.
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Table A6: Yields - inputs relationship, plots with both self-reported and crop cut in EACI 2017. Full
regression results

Yield Measures
SR CC

GPS measured plot area −0.170∗∗ 0.087∗∗

(0.086) (0.042)
Quantity of Seeds 0.262∗∗∗ −0.008

(0.069) (0.039)
Household Labor 0.293∗∗∗ 0.067

(0.097) (0.052)
External labor per ha −0.004 0.011

(0.060) (0.034)
Organic Fertilizer use 0.103 −0.028

(0.092) (0.071)
Mineral/Chemical Fertilizer use 0.057 0.007

(0.080) (0.060)
Pesticides use −0.143 0.162∗

(0.173) (0.096)
Plot is intercropped −0.334 −0.301∗∗∗

(0.237) (0.101)
Plot was inherited −0.027 −0.076

(0.160) (0.103)
Plot was fallowed during the past 10 years 0.033 0.015

(0.164) (0.078)
Plot reliefSR = plain 0.009 0.018

(0.129) (0.061)
Plot soilSR = sandy 0.059 −0.193

(0.296) (0.128)
Plot soilSR = clayey −0.037 −0.177

(0.302) (0.118)
Plot soilSR Quality = Good 0.033 −0.023

(0.113) (0.066)
Number of structures against erosion 0.175 0.048

(0.152) (0.099)

Multivariate Framework? Yes Yes
Enumeration area Fixed Effects? Yes Yes
Observations 1,098 1,098
R2 0.925 0.958
Adjusted R2 0.871 0.928

Notes: Errors clustered at the enumeration area. Significance
levels: *p<0.1; **p<0.05; ***p<0.01
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Table A6: Yields - inputs relationship, plots with both self-reported and crop cut in EACI 2017. Full
regression results -cont.

Yield Measures
SR CC

Plot manager is female −0.164 0.285∗∗

(0.335) (0.129)
Log age of manager 0.834∗∗∗ −0.091

(0.249) (0.093)
Manager is literate 0.686∗∗ 0.030

(0.345) (0.097)
Agriculture Equipment index 0.157 0.084

(0.139) (0.093)
Number of plot of HH −0.025 0.007

(0.018) (0.010)
HH head is female −0.037 −0.576∗∗∗

(0.473) (0.215)
Log size of HH head 0.085 −0.045

(0.086) (0.056)
Log age of HH head −0.814∗∗∗ 0.238∗∗

(0.232) (0.118)
HH head is literate −0.724∗∗ 0.041

(0.336) (0.103)
Welfare index 0.002 −0.040

(0.091) (0.049)
Total amount of rain in 2017 −0.019∗∗∗ −0.012∗∗∗

(0.007) (0.003)
Start of the wettest quarter 0.067∗∗∗ −0.004

(0.011) (0.009)
Distance EA to population center −0.115∗∗∗ −0.004

(0.014) (0.013)
Crop-cut has dammage −3.853∗∗∗ −5.888∗∗∗

(0.451) (0.365)
Percent of pre-harvest losses −0.010∗∗∗ −0.003

(0.004) (0.002)

Multivariate Framework? Yes Yes
Enumeration area Fixed Effects? Yes Yes
Observations 1,098 1,098
R2 0.925 0.958
Adjusted R2 0.871 0.928

Notes: Errors clustered at the enumeration area. Significance
levels: *p<0.1; **p<0.05; ***p<0.01
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Table A7: Yields - inputs relationship, plots with self-reported, crop cut and ML in EACI 2017. Full
regression results

Yield Measures
SR CC ML

GPS measured plot area −0.086 0.087∗∗ 0.083
(0.060) (0.042) (0.052)

Quantity of Seeds 0.162∗∗∗ −0.008 0.007
(0.043) (0.039) (0.028)

Household Labor 0.323∗∗∗ 0.067 0.026
(0.083) (0.052) (0.065)

External labor per ha 0.086∗∗ 0.011 0.004
(0.040) (0.034) (0.037)

Organic Fertilizer use 0.175∗∗ −0.028 0.060
(0.068) (0.071) (0.053)

Mineral/Chemical Fertilizer use 0.119∗ 0.007 0.059
(0.063) (0.060) (0.057)

Pesticides use 0.058 0.162∗ 0.013
(0.083) (0.096) (0.064)

Plot is intercropped −0.378∗∗∗ −0.301∗∗∗ −0.162∗∗

(0.143) (0.101) (0.072)
Plot was inherited 0.049 −0.076 −0.020

(0.082) (0.103) (0.082)
Plot was fallowed during the past 10 years −0.117 0.015 −0.118

(0.125) (0.078) (0.111)
Plot reliefSR = plain −0.052 0.018 −0.089

(0.105) (0.061) (0.078)
Plot soilSR = sandy 0.093 −0.193 −0.095

(0.162) (0.128) (0.102)
Plot soilSR = clayey 0.100 −0.177 −0.133

(0.163) (0.118) (0.100)
Plot soilSR Quality = Good 0.170∗∗ −0.023 0.169∗

(0.072) (0.066) (0.095)
Number of structures against erosion 0.083 0.048 0.159

(0.090) (0.099) (0.097)

Multivariate Framework? Yes Yes Yes
Enumeration area Fixed Effects? Yes Yes Yes
Observations 3,569 1,098 3,569
R2 0.755 0.958 0.769
Adjusted R2 0.714 0.928 0.729

Notes: Errors clustered at the enumeration area. Significance levels: *p<0.1; **p<0.05;
***p<0.01
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Table A7: Yields - inputs relationship, plots with self-reported, crop cut and ML in EACI 2017. Full
regression results -cont.

Yield Measures
SR CC ML

Plot manager is female −0.366 0.285∗∗ −0.051
(0.264) (0.129) (0.139)

Log age of manager 0.413 −0.091 0.225
(0.266) (0.093) (0.224)

Manager is literate 0.278∗∗ 0.030 0.261∗∗

(0.135) (0.097) (0.114)
Agriculture Equipment index 0.176 0.084 0.081

(0.123) (0.093) (0.093)
Number of plot of HH −0.011 0.007 −0.011

(0.012) (0.010) (0.013)
HH head is female 0.239 −0.576∗∗∗ −0.204

(0.306) (0.215) (0.209)
Log size of HH head −0.023 −0.045 −0.066

(0.062) (0.056) (0.059)
Log age of HH head −0.382 0.238∗∗ −0.217

(0.239) (0.118) (0.217)
HH head is literate −0.321∗∗ 0.041 −0.354∗∗∗

(0.133) (0.103) (0.115)
Welfare index −0.070 −0.040 −0.101∗

(0.062) (0.049) (0.060)
Total amount of rain in 2017 −1.723∗∗∗ −0.012∗∗∗ −0.192∗

(0.127) (0.003) (0.107)
Start of the wettest quarter 0.490∗∗∗ −0.004 0.034

(0.025) (0.009) (0.021)
Distance EA to population center −1.492∗∗∗ −0.004 −0.126∗

(0.079) (0.013) (0.068)
Crop-cut has dammage −5.888∗∗∗

(0.365)
Percent of pre-harvest losses −0.032 −0.003 −0.032∗∗∗

(0.004) (0.002) (0.005)

Multivariate Framework? Yes Yes Yes
Enumeration area Fixed Effects? Yes Yes Yes
Observations 3,569 1,098 3,569
R2 0.755 0.958 0.769
Adjusted R2 0.714 0.928 0.729

Notes: Errors clustered at the enumeration area. Significance levels: *p<0.1; **p<0.05;
***p<0.01

51



Figure A2: Distributions of key variables in ERIVaS and EACI 2017
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Figure A3: SR and ML over-estimation of CC yield over Quintile of Inputs
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Appendix B Details of the estimation procedure of the

yields using machine learning

In using ML to predict outcomes variables such as income, or poverty, the literature advises to train a

model following key steps:

• Exclude a test set

• Estimate parameters of models on the training set

• Use cross-validation on the training set to estimate the errors of these models

• Pick the best model or use ensemble methods to optimally stack models together

• Estimate the error on the test set (it is important not to change the model at this point to get a

better fit at the risk of over fitting it to the test set)

We use the R package SuperLearner (Polley et al., 2018) which provides a simple way to implement

to combine a wide library of machine learning algorithms to train and test an ML model. Ensemble

methods are often used to choose the best algorithm using cross validation and ensemble methods.

Figure B1 illustrates the procedure when using the R package SuperLearner. 20. The data is split

Figure B1: Illustration of the SuperLearner application
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in cross validation blocks (randomly formed mutually exclusive sub-samples of the training data set)

leaving one out for validation which is also done on the entire training data set. Then each candidate

20For more on the SuperLearner package see: Polley et al. (2018)
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learner (ML algorithm) is trained in the cross validation blocks and predictions are made based on the

corresponding training blocks in the validation sample. The next step consists in model selection and

fitting for the regression of the observed outcome onto predicted outcomes (the observed outcome is

regressed on predicted outcomes). Finally, the SuperLearner performance is evaluated by combining

the predictions from each ML algorithm. We follow this procedure in the ERIVaS sample. We start our

simulation exercise with a training set representing one-third of the total sample (this is the percentage of

plots that typically received crop cut subplots in farm surveys which have adopted crop cut methodology

as part of the World Bank LSMS-ISA program).

Figure B2 shows the cross validation risk estimate (a measure of the mean square error of the model)

using 5 cross validation splits (5 randomly selected sub-samples of the training set on which the ML

algorithms are trained independently). We settled on 5 cross validation splits after experimenting with

different number of splits. This choice is also supported by the literature: (James et al., 2014) note that

“there is a bias-variance trade off associated with the choice of the number of splits and typically, given

these considerations, one performs cross-validation using 5 or 10 splits, as these values have been shown

empirically to yield test error rate estimates that suffer neither from excessively high bias nor from very

high variance.” Given the low number of observations in our sample, it is also understandable that we

would have to choose 5 splits instead of 10 splits in which case we would have too small a sample to fit

the prediction.

Figure B2: Cross Validation errors for each ML algorithms based on 5 fold cross validation (test set size is
33% of entire sample). The figure shows each ML algorithms used by the SuperLearner and the measure of
the mean square errors in the validation samples. The ML model with the lowest error (risk) is a combination
of the ML algorithms.
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In the end, the risk is minimized for the ensemble (the package finds optimal combination of ML
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algorithms predictions that minimize mean squared errors) with a 5-fold cross validation splits. The

linear combination of learners that results in the minimal risk is recorded in Table B1. The algorithms

chosen by the SuperLearner by order of importance are an equally weighted linear combination of Lasso

and Ridge, Lasso, a boosted Random Forest, and Random Forest.

Table B1: Optimal combination of learners determined by the SuperLearner Package. The SuperLearner
Package fit a prediction with all the ML algorithms that are available and provide a linear combination of
the fitted predictions that resulted in the lowest mean square error. Here we show the combination when
the training set is a third of the sample. Note that all the algorithms are regression algorithms.

Algorithms Coefficient
Lasso 0.135
Linear combination Lasso and Ridge 0.681
Ridge 0.000
Random Forest 0.053
Kernel Regression 0.000
Boosted Random Forest 0.131
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Appendix C Field work protocol inputs

C.1 Field work protocol for crop cutting

The following is a translated (from French) excerpt from the ERIVaS field staff manual. In ERIVaS

crop cut sub-plots of 8x8m subdivided in four 4x4m quadrants were set up.

There are three aspects to this exercise – the first is conducted with the post-planting questionnaire

and the last two are conducted at the time of harvest. The first aspect is the selection of a random 8m

x 4m crop cutting subplot within the plot. Using the rope, the 4mx4m subplot will be divided into four

4mx4m quadrants. The 8x8m subplot will be selected using random number tables. The materials that

you will need for use in this exercise are:

• Section H (crop cutting Questionnaire) will be completed as part of the post-planting visit,

when the crop cutting subplots are demarcated.

• Compass

• Pre-measured 8m x 8m PVC pipe: A set of PVC pipes that are pre-measured to create 8x8

meter square will be provided to each enumerator to ensure the crop cut area is precisely 8x8

meters.

• Pre-measured 4m x 4m PVC pipe

• Sticks (8) for Area Demarcation

• Measuring Tape: This is a distance-measuring instrument marked in metric-units (segments),

which will be used to determine the location of the areas in the plot.

• Rope (32+ meters per household)

Procedure for Crop Cutting

We will be conducting crop cutting on a 8m x 8m subplot. However, we will divide the 4mx4m area

into four 2mx2m squares (also called quadrants). Therefore, there will be a total of FOUR 4m x 4m

quadrants. The harvest of each quadrant will be recorded separately. Here, we describe in further detail

each of the four main aspects to the crop cutting exercise.

You will first construct the 4m x 4m subplot by following steps 1 and 2 below.

1 Crop Cutting Area Selection:

a. Use Random Number Table # 1 to identify the corner from which you will start. Use the first

number in the random number table that matches one of the corners of the plot. The corner

in which you started the area measurement, the northwest corner, is corner# 1. Corner # 2

is the next corner of the plot, moving around the plot clockwise.

b. Measure the distance of the two sides along the selected corner with the measuring tape.

Identify which is the longer side and which is the shorter side.

c. Take the bearing from the start corner down the shorter side. Note this in your notebook.

∗ Open the mirror of the compass and hold the compass at the level of your eyes such

that you can read the image of the capsule in the mirror
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∗ Align the objective with the short side direction

∗ Without moving the compass turn the capsule such that the 0 degree mark is in the

direction of the short side

∗ The bearing is the angle indicated by the North mark. .

d. Use the Random Number Table #2 provided for this household. The first number should be

the number of meters that you will walk along the length of the longer side of the plot. If

the first number is larger than the length of the side, choose the next random number (and

so on, until you find a number that is less than the length of the side). For example, if the

length of the longer side is 25 meters and the first random number in the list is 28, move on

to the next number.

e. Beginning at your starting point and continuing along the longer side of the plot, walk the

number of meters indicated by your random number.

f. Turn into the plot so that your bearing is the same as the bearing you measured down the

shorter side of the plot. This means you will be entering the plot parallel to the shorter side.

Choose the next random number from Random Number Table #2 that is shorter than the

length of the shorter side and walk the number of meters indicated by this second random

number. You should be walking in a direction that is parallel to the shorter edge of the plot.

Walk in a straight line. Try not to veer to the right or left to avoid shrubs or wet spots.

g. The corner of the crop cutting subplot is located where your foot lands on the last step: this

is point A.
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C.2 Farmer Self-Reported Production Estimates

Table C1: Village level conversion factors used for self-reported production

Unit Mean Std.De Frequency
kg NA NA 136
Sheaf 0.898 0.110 144
Bag-50kgs NA NA 5
Bag-100kgs 97.243 9.887 103
Donkey-cart 178.543 47.512 157
Ox-cart 153.524 17.931 29

Notes: We show the conversion factors adjusted for shelling losses.

Bag-50kgs were declared in grains conditions so there’s no CF adjusted for shelling.

Table C2: Descriptives by heaping status

Unit Heaped Not Heaped Differences in Means
Plot area GPS (ha) 1.259 1.666 ***

SR− CC 188.347 118.188
SR/CC 2.283 1.970

Proportion 0.256 0.744

Notes: Production tagged as heaped if self-reported as multiple of hundreds when less than a ton

and reported in kgs sheaves or if self-reported as multiple of 500 hundreds when more than a ton.

and reported in kgs or sheaves or if self-reported 1, 2, 3, 4, 5, or 10 Bag-100kgs
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure C1: Histograms showing distribution of self-reported production by units

Production reported in Kg

Number of units reported

F
re

qu
en

cy

0 200 400 600 800

0
2

4
6

8
10

Production reported in sheaves

Number of units reported

F
re

qu
en

cy

0 200 400 600 800 1000

0
2

4
6

8
10

Production reported in Bag−100kgs

Number of units reported

F
re

qu
en

cy

5 10 15

0
5

10
15

20

60



 

23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
CONTACT US AT 

 
info@50x2030.org 

 
www.50x2030.org 

 

 

mailto:info@50x2030.org
http://www.50x2030.org/

	YacoubouDjimaKilic WP FINAL + cover
	Diapositiva18
	YacoubouDjimaKilic WP FINAL.pdf
	Introduction
	Data
	Context
	Fieldwork details
	Descriptive statistics
	Correlates of measurement errors in self-reported vs. crop cut measure of yields

	Assessing the relationship between yields and inputs
	Analytical framework
	Empirical results

	Estimating the relationships between yields and inputs using machine learning-based imputed crop cut yields
	Analytical framework
	Empirical application
	Machine learning modeling
	Accuracy of the ML measure yields
	Empirical assessment of the yields and inputs relationship using predicted yields
	Application on the nationally representative survey


	Implications for crop yield measurement in household and farm surveys
	Concluding remarks
	Additional tables, full regression results, and figures
	Details of the estimation procedure of the yields using machine learning
	Field work protocol inputs
	Field work protocol for crop cutting
	Farmer Self-Reported Production Estimates



	Back cover

