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Abstract 

 

With the surge in publicly available high-resolution satellite imagery, satellite-based monitoring 

of smallholder agricultural outcomes is gaining momentum. This paper provides recommendations 

on how large-scale household surveys should be conducted to generate the data needed to train 

models for satellite-based crop type mapping in smallholder farming systems. The analysis focuses 

on maize cultivation in Malawi and Ethiopia, and leverages rich, georeferenced plot-level data 

from national household surveys that were conducted in 2018-20 and that are integrated with 

Sentinel-2 satellite imagery and complementary geospatial data. To identify the approach to survey 

data collection that yields optimal data for training remote sensing models, 26,250 in silico 

experiments are simulated within a machine learning framework. The best model is then applied 

to map seasonal maize cultivation from 2016 to 2019 at 10-meter resolution in both countries. The 

analysis reveals that smallholder plots with maize cultivation can be identified with up to 75 

percent accuracy. However, the predictive accuracy varies with the approach to georeferencing 

plot locations and the number of observations in the training data. Collecting full plot boundaries 

or complete plot corner points provides the best quality of information for model training. 

Classification performance peaks with slightly less than 60 percent of the training data. Seemingly 

small erosion in accuracy under less preferable approaches to georeferencing plots results in total 

area under maize cultivation being overestimated by 0.16 to 0.47 million hectares (8 to 24 percent) 

in Malawi. 
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1. Introduction 

 

Agriculture is an integral part of livelihoods in Sub-Saharan Africa, where it can contribute up to 

69 percent of household income in rural areas (Davis et al. 2017). As such, improving the 

productivity of smallholder farmers has been a long-standing goal in many African countries that 

aim to eliminate poverty and food insecurity.   

  

To monitor progress towards national and international development goals related to agricultural 

productivity, countries need accurate, crop-specific measures of area under cultivation, production 

and yields – not only at the national level but with sufficient within-country disaggregation that 

can guide targeting and evaluation of policies and programs promoting not only agricultural and 

rural development but also resilience against disasters and extreme weather events. 

  

With the commencement of the European Space Agency’s Sentinel-2 mission in 2015 and the 

subsequent surge in the public availability of high-resolution satellite imagery, research has shown 

the feasibility of satellite-based monitoring of agricultural outcomes in smallholder farming 

systems (Becker-Reshef et al., 2020;  Burke and Lobell, 2017; Jin et al., 2017, 2019; Lambert et 

al., 2018; Lobell et al., 2019, 2020). Latest advances in satellite imagery and remote sensing 

techniques have the potential to provide timely insights into conditions on the ground and can fill 

gaps in agricultural monitoring and statistics (Nakalembe, 2020).  

 

Satellite-based approaches to mapping agricultural outcomes, such as crop-specific estimates of 

cultivated areas and yields, require data for training and validating the underlying remote sensing 

models. The quality and spatial resolution of satellite-based estimates is directly impacted by the 

data used for model training and validation (Lobell et al., 2019, 2020). Recent earth observation 

research that has focused on low-income countries has relied largely on two sources of training 

and validation data: (i) manually-labeled optical imagery (DeFourny et al., 2019; Xiong et al., 

2017; Wei et al., 2020),1 and (ii) ground data collection, including as part of household and farm 

surveys (Hegarty-Craver et al., 2020; Jin et al., 2017, 2019; Kerner et al., 2020; Lambert et al., 

2018; Richard et al., 2017).2  Our paper is related to earth observation applications that rely on 

 
1 In order to map cropland across the African continent, researchers have manually labeled land cover types for sample 

points using high-resolution optical imagery as a reference. For example, Xiong et al (2017) created a training data 

set covering Africa by labeling homogenous crop/non-crop areas with a minimum area of 90 x 90 meters (0.81 ha). 

Several satellite-based cropland data sets have been created for the African continent (using manually-labeled satellite 

imagery - see Wei et al.’s (2020) comparison of the available data sets), and at sub-regional scales (DeFourny et al. 

2019).  
2 In order to train and validate remote sensing models for mapping cropland and areas cultivated with maize and non-

maize crops, including cassava and beans, at sub-national areas in Tanzania and Kenya, researchers either have used 

existing survey data that were collected by non-governmental organizations and government agencies to (Jin et al., 

2017, 2019; Kerner et al., 2020) or have conducted new survey data collection to meet model training needs (Richard 

et al., 2017). Similarly, Lambert et al. (2018) rely on sub-national in situ data collected in Mali for satellite-based crop 

type mapping and yield estimation at the village-level in Konigue commune. Relatedly, Hegarty-Craver et al. (2020) 
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georeferenced survey data to meet model training and validation needs and that in turn attempt to 

generate agricultural insights in low-income, smallholder contexts and with greater levels of 

accuracy, spatial resolution, frequency and timeliness vis-a-vis surveys alone.  

 

On surveys, research has revealed the need to use improved methods for household and farm 

survey data collection for enhancing our understanding of the agricultural sector, particularly in 

smallholder systems that stand to benefit the most from the resulting data (Abay et al. 2019; 

Carletto et al., 2015, 2017; Desiree and Jolliffe, 2018; Kilic et al., 2020). Gourlay et al. (2019) 

demonstrated that the inverse scale-productivity relationship in agriculture (i.e. the hypothesis that 

smallholders are more productive than their larger counterparts) may be a statistical artifact, driven 

by systematic measurement errors in farmer-reported survey data on crop production. The authors 

showcased these errors by comparing objectively-measured crop cutting and farmer-reported 

maize yields on the same sample of plots in Eastern Uganda.3 Follow-up research has demonstrated 

that survey methods for measuring crop yields directly affect the utility of surveys for earth 

observation applications, and have provided unambiguous support for the use of objective survey 

methods to generate the required training and validation data for remote sensing models that 

integrate survey and satellite data to derive high-resolution estimates of crop yields (Lobell et al. 

2019, 2020 in Uganda and Mali, respectively).  

 

Despite the expanding knowledge base regarding the use of earth observation techniques in low-

income countries that are primarily characterized by smallholder farming, research studies have 

largely remained sub-national in scope and have exhibited heterogeneity in terms of the content of 

the ground data used in support of comparable analytical objectives pursued in different settings. 

Lack of methodological research to identify the required volume of and approach to ground data 

collection for training and validating remote sensing models is arguably one of the hurdles against 

the scale-up of satellite-based estimation of agricultural outcomes across countries and expansive 

geographies. Identifying ground data requirements for key earth observation applications in low-

income countries, including high-resolution crop type mapping and crop yield estimation, would 

be important not only for assessing the utility of existing georeferenced household survey data for 

earth observation research but also informing the design of future large-scale household and farm 

surveys that can provide the required training and validation data for downstream earth observation 

efforts.4 

 

Against this background, this paper addresses several operational and inter-related research 

questions in the context of high-resolution maize area mapping in Malawi and Ethiopia: 1) what 

 
mapped four crop types (maize, beans, bananas, cassava) in Senegal using training data derived from high-resolution 

UAV imagery which they collected in the field.  
3 These findings are corroborated by Abay et al. (2019) and Desiere and Jolliffe (2018), in Ethiopia and Uganda, 

respectively.  
4 Future large-scale surveys that can be a source of training and validation data for earth observation efforts include 

surveys that are supported by the 50x2030 Initiative. 
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is the minimum volume of household survey data that is required to reach an acceptable level 

accuracy of a crop classification algorithm? and 2) how does the approach to georeferencing plot 

locations as part of household surveys impact the accuracy of the same crop classification 

algorithm? Furthermore, we demonstrate how our crop classification accuracy is affected based 

on 1) the type of satellite data used (optical only, radar only or both) - given the considerable 

differences in the complexity and costs of imagery processing across the various options, and 2) 

whether plots under specific area thresholds are excluded from the training data - given the 

potential concerns around the mismatch between the relatively small scale of farming in Malawi 

and Ethiopia and the Sentinel-2 imagery used in our analysis.  

 

The analysis leverages three national multi-topic household surveys that have been implemented 

by each country’s national statistical agency over the period of 2018-2020 with financial support 

from the World Bank Living Standards Measurement Study - Integrated Surveys on Agriculture 

(LSMS-ISA) initiative. The surveys include detailed, plot-level data on crop farming and 

georeferenced plot locations. Each data set offers a representative snapshot of the smallholder 

production system in each country for a given reference season. Linking georeferenced plot-level 

survey data to publicly available Sentinel-2 imagery and other ancillary geospatial data for the 

reference agricultural season, we conduct a rich array of sensitivity analyses to assess how crop 

type prediction accuracy changes when trained on different subsets of plot observations in the 

survey data - not only in terms of the plot observation count but also the approach to georeferencing 

plot location. Each data subset was designed to simulate a specific ground data collection scenario. 

We simulate conditions where, for example, only a certain amount or quality of data is available 

to train a model, and then compare the out-of-sample prediction accuracies across the scenarios. 

The results of 26,250 in silico experiments shed light on the ground data needs that should be met 

for household surveys to plan a more enabling role in satellite-based crop type mapping. After 

identifying the best available model, we apply it to map areas cultivated with maize across Malawi 

and Ethiopia at 10-meter spatial resolution. 

 

There are six headline findings that emerge from our analysis. First, a simple machine learning 

workflow can classify pixels with maize cultivation with up to 75 percent accuracy - though the 

predictive accuracy varies with the survey data collection method and the number of observations 

available for model training. Second, georeferencing plot locations by collecting either full plot 

boundaries or complete plot corner points provide the best quality of information for model 

training. Third, classification performance almost always peaks before or around 4,000 plots - 

corresponding to slightly less than 60 percent of the training data. Fourth, the seemingly-small 

erosion in predictive accuracy under less preferable approaches to georeferencing plot locations 

results in total area under maize cultivation being overestimated by 0.16 to 0.47 million hectares 

(8 to 24 percent) in Malawi vis-a-vis the results from the best performing model. Fifth, to avoid 

overfitting models, it is preferable not to exclude from the training data set any plot observations 

based on a minimum area threshold. Finally, in the case of maize area mapping in Malawi, optical 
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features alone can provide sufficient signal to maximize prediction quality and the potential 

benefits offered by synthetic aperture radar, i.e. satellite data unaffected by cloud cover, can be 

offset by additional noise introduced with its use.  

 

The paper is organized as follows. Section 2 describes the survey and earth observation data. 

Section 3 presents the empirical methodology. Section 4 discusses the results and section 5 

concludes. 

 

2. Data 

2.1. Survey data 

We use nationally representative, multi-topic household survey data collected in Malawi and 

Ethiopia by the respective national statistical offices over the period of 2018-2020 with support 

from the World Bank Living Standards Measurement Study-Integrated Surveys on Agriculture 

(LSMS-ISA) initiative. The key variables that drive each survey’s sampling design is household 

consumption expenditures and poverty. However, the surveys do provide large samples of 

agricultural households and extensive data on their agricultural activities. Maize is the primary 

crop grown in Malawi, while in Ethiopia, small grains are more prevalent, but maize still plays an 

important role as a staple crop. More details regarding the survey data are provided below.  

 

2.1.1. Malawi 

 

The survey data in Malawi stem from the Integrated Household Panel Survey (IHPS) 2019 and the 

Fifth Integrated Household Survey (IHS5) 2019/20. The surveys were implemented concurrently 

by the Malawi National Statistical Office. 

 

IHPS 2019 is the fourth follow-up to a national sample of households and individuals that had 

been interviewed for the first time in 2010, and later in 2013 and 2016. At baseline, the IHPS was 

designed to be representative at the national-level and separately for rural and urban domains.5 

Starting in 2013, the IHPS attempted to track all household members that were interviewed in the 

last survey round and that were projected to be at least 12 years of age and were known to be 

residing in mainland Malawi during the follow-up survey round.6 Once a split-off individual was 

located, the new household that he/she may have joined vis-a-vis the prior survey round was 

brought into the IHPS sample. Based on these protocols, the dynamically expanding IHPS sample 

included 3,181 households in 2019, which can be traced back to 1,491 original households that 

 
5 For more information on the IHPS rounds, please consult the publicly-available basic information document for 

each survey - IHPS 2010: https://bit.ly/ihps2010; IHPS 2013: https://bit.ly/ihps2013; IHPS 2016: 

https://bit.ly/ihps2016; and IHPS 2019: http://bit.ly/ihps2019. 
6 The individuals who were residing in prisons, police compounds or army barracks were excluded from tracking.  

https://bit.ly/ihps2010
https://bit.ly/ihps2013
https://bit.ly/ihps2016
http://bit.ly/ihps2019
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had been interviewed in 2010. The IHPS 2019 fieldwork was conducted from April to December 

2019, and the households that were determined to have owned and/or cultivated land during the 

2018/19 rainy season were attempted to be visited twice, once in the post-planting period and once 

in the post-harvest period, following the same set of fieldwork protocols that had been used in the 

prior IHPS rounds. 

 

The IHS5 2019/20 is the second source of survey data in Malawi. Unlike the IHPS 2019, the IHS5 

is a cross-sectional survey that is designed to be representative at the national-, urban/rural-, 

regional- and district-levels. The IHS5 sample includes a total of 11,434 households, distributed 

across 717 EAs throughout Malawi.7 The fieldwork was implemented from April 2019 to April 

2020, and each sampled household was visited once. The households that were determined to have 

owned and/or cultivated any land reported information on the last completed rainy season, which 

could have been 2017/18 or 2018/19 depending on the interview date. 

 

The IHPS 2019 and the IHS5 2019/20 used identical, extensive agricultural questionnaires that 

elicited information at the parcel-, parcel-plot-, and parcel-plot-crop-level, depending on the topic. 

Of particular importance to our research is that the surveys identified each crop cultivated on each 

plot, and in the process, determined whether a given plot was monocropped or intercropped. 

Further, each cultivated plot that was determined to be within 2 hours of travel (irrespective of the 

mode of transport) was attempted to be visited with the farmer. The plot area was captured with a 

Garmin eTrex 30 handheld global positioning system (GPS) unit, and the plot location was 

georeferenced in two ways: (i) the enumerator captured the GPS coordinates for the corner point 

at which the plot area measurement commenced and manually inputted the GPS coordinate into 

the computer-assisted personal interviewing (CAPI) application (i.e. the corner point method), and 

(ii) the enumerator also captured the perimeter of the plot during the plot area measurement 

exercise and stored the resulting geospatial polygon on the GPS unit following a naming 

convention that facilitates the linking of the polygon to the plot record in the household survey 

data (i.e. the full boundary method). 

 

We refined the initial data set to isolate the best quality data for the analysis. Plot records were 

retained only if they possessed both a corner point and a full plot boundary and had a crop type 

record for the reference rainy agricultural season. Furthermore, if the location information (either 

corner point, or plot boundary, or both) was duplicated across two or more plots, we dropped all 

duplicated records, except in cases where one, and only one, of the duplicated records had a high 

degree of confidence assigned to their location data quality - in these cases, the record with the 

high degree of confidence was kept and the remaining records were dropped. Lastly, only records 

with a high degree of confidence in the location data quality (both for the corner point and the plot 

boundary), as indicated by a metric provided by the GPS unit, were retained. We treated plots that 

were cultivated with any maize as “maize plots”, and otherwise labeled them as “non-maize.” 

 
7 See the IHS5 2019/20 basic information document for more information: http://bit.ly/ihs201920. 

http://bit.ly/ihs201920


 

7 

Tables 1 and 2 show the IHPS 2019 and the IHS5 2019/20 rainy season plot observations, broken 

down by georeferenced information availability and by maize cultivation status, respectively. The 

final analysis sample includes 1,470 IHPS 2019 plots and 3,506 IHS5 plots that are specific to 

2018/19 rainy season, and 1,926 IHS5 plots that are specific to 2017/18 season. The total number 

of agricultural households that are associated with these observations is 1,470 in the IHPS and 

5,432 in the IHS5. 

 

Table 1: IHPS 2019 and IHS5 2019/20 rainy season plots by georeferenced information availability 

Plot category 
IHPS 2019 IHS5 2019/20 

Obs % Obs % 

Plots with no geolocation information 334 6.2 1,105 6.4 

Plots with a corner point, but no polygon boundary 1,365 25.4 4,871 28.4 

Plots with a corner point and a polygon boundary, but dropped from analysis 874 16.3 2,139 12.5 

Plots with a corner point and a polygon boundary, used for analysis 2,792 52.0 9,059 52.7 

Total # of Plots 5,365 100.0 17,174 100.0 

Total # of Associated Households 2,335 8,770 

 

Table 2: IHPS 2019 and IHS5 2019/20 rainy season plots by maize cultivation status, conditional on being used for 

analysis 

 IHPS 2019 IHS5 2019/20 

Season 2018/19 2017/18 2018/19 

Crop type Obs % Obs % Obs % 

Maize 2,033 72.8 2,330 71.4 4,222 72.9 

Non-maize 759 27.2 935 28.6 1,572 27.1 

Total # of Plots 2,792 100.0 3,265 100.0 5,794 100.0 

Total # of Associated Households 1,470 1,926 3,506 

 

To begin investigating how the approach to georeferencing plot locations would affect the 

accuracy of remote sensing models that combine survey and satellite data for high-resolution crop 

type mapping, we used the full plot boundaries to first derive several additional sets of coordinates 

that could have been generated with alternative plot geolocation methods and that include: 

 

1. The coordinates of one plot corner that is recorded by the enumerator, i.e. “corner point.” 

2. The coordinates of the plot centroid that is derived from the full boundary, i.e. “centroid.” 

3. The coordinates of 4 to 8 plot corner points that are derived from the boundary, based on 

the complexity of the plot shape (geometric simplification) and that are in turn used to: 



 

8 

a. Derive the geospatial predictors for each pixel corresponding to a given corner 

point and use these pixels and the associated predictors as the training data, i.e. 

“boundary points.” 

b. Randomly select 20% of the pixels within the convex hull that is formed by the 

corner points; derive the geospatial predictors of interest for each sampled pixel; 

and use these pixels and the associated predictors as the training data, i.e. “convex 

hull.” 

c. Derive the geospatial predictors for all pixels within the convex hull and aggregate 

the information to the plot-level by taking the average, for each predictor, across 

all pixels, i.e. “hull mean.” 

4. The full plot boundary that is in turn used to: 

a. Randomly select 20% of the pixels from a 10m grid within the plot; derive the 

geospatial predictors of interest for each sampled pixel; and use these pixels and 

the associated predictors as the training data, i.e. “plot points.” 

b. Derive the geospatial predictors for all pixels from a 10m grid within the plot and 

aggregate the information to the plot-level by taking the average, for each predictor, 

across all pixels, i.e. “plot mean.” 

 

This listing of alternative approaches to georeferencing plot locations on the ground is also 

indicative of the increasing operational complexity as we move from 1 to 4. Finally, Figure 1 

provides a visual overview of these methods and how they impact the computation of geospatial 

predictors that are specific to each plot.  
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Figure 1: Plot geolocation methods and approaches for combining plot geometries with pixel-level data 

 

2.1.2 Ethiopia 

 

The survey data in Ethiopia originate from the Ethiopia Socioeconomic Survey (ESS) 2018/19, 

which was implemented by the Central Statistical Agency as the new baseline for the national 

longitudinal household survey program. The ESS 2018/19 has been designed to be representative 

at the national-, urban/rural- and regional-levels, and the sample includes a total of 7,527 

households, distributed across 565 EAs throughout Ethiopia. The rural ESS sample includes 3,792 

households that originated from 316 EAs that were subsampled from the sample of EAs that were 

visited by the Annual Agricultural Sample Survey 2018. In each rural EA, the ESS households 

that cultivated any land during the 2018 (meher) agricultural season were visited twice by the 

resident enumerator, once in the post-planting period and once in the post-harvest period. Similar 

to the IHS5 and the IHPS, the ESS 2018/19 also used extensive agricultural questionnaires that 

elicited information at the parcel-, parcel-plot-, and parcel-plot-crop-level, depending on the topic. 

Each cultivated crop was identified on each plot, and the data are indicative of whether a given 

plot was monocropped or intercropped.8 Finally, the ESS CAPI application that leveraged the GPS 

functionality of the Android tablets enabled each enumerator to georeference the corner point for 

 
8 See the ESS 2018/19 basic information document for more information: http://bit/ly/ess201819.  

http://bit/ly/ess201819
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starting the plot area measurement (which was then conducted with a Garmin eTrex 30 handheld 

GPS unit).  

 

For our analysis, the plot records were retained only if they possessed corner point information 

and had a crop type record for the 2018 meher season. Furthermore, if the location information 

was duplicated across two or more plots, we dropped all duplicated records, except in cases where 

one, and only one, of the duplicated records had a high degree of confidence assigned to their 

location data quality - in these cases, the one record with the high degree of confidence was kept 

and the remaining records were dropped. Lastly, a small share of plots was dropped due to low 

confidence in their location data quality, as captured by the Android tablet. We treated plots that 

were cultivated with any maize plantings as maize plots, and otherwise labeled them as “non-

maize.” Tables 3 and 4 show the breakdown of ESS 2018/19 meher season plots, by georeferenced 

information availability and by maize cultivation status, respectively.9 The final analysis sample 

includes 11,095 ESS 2018/19 plots, originating from 2,090 households. Since the ESS 2018/19 

did not capture full plot boundaries, our analysis focuses primarily on Malawi, with the findings 

from Ethiopia playing a supporting role.  

 

Table 3: ESS 2018/19 meher season plots by georeferenced information availability 

Plot category 
ESS 2018/19 

Obs % 

Plots with no geolocation information 1,168 8.7 

Plots with a corner point, but dropped from analysis 299 2.2 

Plots with a corner point, used for analysis 11,905 89.0 

Total # of Plots 13,372 100.0 

Total # of Associated Households 2,199 

 

Table 4: ESS 2018/19 meher season plots by maize cultivation status, conditional on being used for analysis 

Crop type 
ESS 2018/19 

Obs % 

Maize 1,867 15.7 

Non-maize 10,038 84.3 

Total # of Plots 11,905 100.0 

Total # of Associated Households 2,090 

 
9 The share of plots with no geolocation information is significantly lower in the ESS 2018/19 data mainly due to the 

reliance on resident enumerators, as opposed to mobile survey teams in the context of the IHPS 2019 and the IHS5 

2019/20. 
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2.2. Earth observation data sets 

Mapping crop area among smallholder plots across a large geographic scale requires satellite 

remote sensing data sources with high spatial resolution and temporal cadence. Building on 

precedents set in the research literature, we designed an array of satellite-derived metrics that can 

be used by a statistical model to distinguish between crop cover types. We used two types of 

satellite imagery in our maize area mapping experiments - optical and synthetic aperture radar 

(SAR). Each data source captures different crop properties useful for crop type mapping. For 

example, optical imagery records information that can be used to characterize a crop’s phenology, 

while SAR imagery captures properties of the canopy structure that may signify differences 

between crops (Robertson et al. 2020). We processed and extracted both optical and SAR data to 

the survey plot locations for maize area mapping.  

2.2.1 Synthetic aperture radar imagery 

Sentinel-1 (S1) satellites carry a Synthetic Aperture Radar (SAR) sensor that operates in a part of 

the microwave region of the electromagnetic spectrum which is insensitive to water vapor and thus 

unaffected by clouds or haze. Sentinel-1 Interferometric Wide swath mode (IW) provides images 

with dual polarization (VV and VH) centered on a single frequency. Google Earth Engine provides 

S1 images at 10m resolution which are corrected for noise. To use this imagery, we applied Local 

Incidence Angle (LIA) correction, and computed RATIO and DIFF bands (Table 5). 

2.2.2 Optical imagery 

Sentinel-2 (S2) satellites provide multispectral imagery for 13 spectral bands with a 10 m 

resolution for red, green, blue, and near infrared bands used to compute common vegetation 

indices. We used S2 Level-2A imagery hosted in Google Earth Engine (Gorelick et al. 2017) in 

our analysis. Image pre-processed included masking out pixels containing clouds, cloud shadows, 

haze, and snow using quality masks provided with the imagery product (see Appendix Table A1 

for summary statistics on imagery counts). Once preprocessed, five vegetation indices (VIs) were 

calculated for all available S2 images (Table 5). 
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Table 5: Satellites, bands and indices used in the analysis. 

Band / 

Index 

Name Central wavelength / Index formula Satellite 

VV Vertically polarized backscatter 5.5465763 cm  Sentinel-1 

VH Horizontally polarized backscatter 5.5465763 cm Sentinel-1 

RATIO Ratio VV / VH Sentinel-1 

DIFF Difference VV – VH Sentinel-1 

RDED4 Red Edge 4 865 nm Sentinel-2 

GCVI Green Chlorophyll Vegetation Index (NIR – GREEN)/1  Sentinel-2 

NBR1 Normalized Burn Ratio 1 (NIR – SWIR1) / (NIR + SWIR1) Sentinel-2 

NDTI Normalized Difference Temperature Index (SWIR1 – SWIR2) / (SWIR1 + SWIR2) Sentinel-2 

NDVI Normalized Difference Vegetation Index (NIR – RED) / (NIR + RED) Sentinel-2 

SNDVI Smoothed Normalized Difference 

Vegetation Index 

(NIR – RED) / (NIR + RED + 0.16) Sentinel-2 

 

2.2.3 Harmonic regressions for characterizing crop phenology 

We used the multi-temporal collection of bands and indices from S1 and S2 to capture changes in 

crop phenology over time. To identify temporal patterns that characterize crop phenology, a 

harmonic regression model was fit at a pixel level to the time series of each unique band and index 

(Deines et al. 2020, Jin et al. 2019). See Equations 1 and 2 for Malawi and Ethiopia, the latter of 

which includes an additional pair of harmonic terms. The algorithm produces features that capture 

the seasonality of different crop types and that include harmonic coefficients, seasonal mean, and 

goodness of fit measures. These features are useful to map crop types because a maize pixel 

undergoes seasonal changes in greenness that differ from those of other crops (See Figure 2).  

 

Equation 1 

𝐺𝐶𝑉𝐼𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑐𝑜𝑠(2𝜋𝜔1𝑡) + 𝛽3𝑠𝑖𝑛(2𝜋𝜔1𝑡) + 𝛽4𝑐𝑜𝑠(2𝜋𝜔2𝑡) + 𝛽5𝑠𝑖𝑛(2𝜋𝜔2𝑡) + 𝜖 

(where 𝜔1 = 1 and 𝜔2 = 2) 

 

Equation 2 

𝐺𝐶𝑉𝐼𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑐𝑜𝑠(2𝜋𝜔1𝑡) + 𝛽3𝑠𝑖𝑛(2𝜋𝜔1𝑡) + 𝛽4𝑐𝑜𝑠(2𝜋𝜔2𝑡) + 𝛽5𝑠𝑖𝑛(2𝜋𝜔2𝑡) 

+𝛽6𝑐𝑜𝑠(2𝜋𝜔3𝑡) + 𝛽7𝑠𝑖𝑛(2𝜋𝜔3𝑡) + 𝜖 

(where 𝜔1 = 1, 𝜔2 = 2, and 𝜔3 = 3) 
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Figure 2. Examples of the harmonic model smoothing for three different crop types (maize, groundnut, and soybean) 

using a Sentinel-2 GCVI time series in Malawi. The blue points represent the observed Sentinel-2 GCVI time series 

at a specific location in Malawi through November 2018 - July 2019. The red line represents the harmonic fitted GCVI 

time series.  

 

2.2.4 Additional EO data 

In addition to multispectral imagery from S2 and SAR imagery from S1, we leveraged data sources 

that capture landscape and climatological factors correlated with crop type selection. Topography 

features including elevation, slope, and aspect are commonly incorporated into land cover and land 

use classifications (Hurskainen et al. 2019). We obtained these three features from the Shuttle 

Radar Topography Mission (30 m resolution) as proxies for cropland suitability based on the 

assumption that areas with high slope and elevation are less likely to be suitable for agriculture 

due to erosion and soil degradation potential. Climate conditions are additional key determinants 

of crop suitability and therefore can contribute meaningful information in cropland classification 

models (Konduri 2020). We included weather variables in our models including total precipitation, 

average temperature, and growing degree days (GDD) during the cropping season. Gridded 

weather estimates were obtained from the aWhere daily observed weather API (0.1-degree 

resolution for Sub-Saharan African countries, included for Malawi only). Weather data from 

aWhere was limited to Malawi only due to data licensing constraints. Table 6 shows the additional 

data used in the pipeline. 
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Table 6: Additional EO data used in the maize classification pipeline 

Feature Explanation Data Source Included in 

Elevation Obtained using GEE’s 

inbuilt terrain algorithm 

that uses an elevation 

raster to generate slope 

and aspect bands 

Shuttle Radar Topography 

Mission (30-meter 

resolution) 

Malawi, Ethiopia 

Slope Malawi, Ethiopia 

Aspect (direction of slope) Malawi, Ethiopia 

Average temperature Mean daily temperature 

during growing season 

aWhere daily observed 

weather API (0.1-degree 

resolution) 

Malawi 

GDD Growing degree days* 

accumulated during 

growing season 

Malawi 

Total precipitation  Total precipitation during 

growing season 

Malawi 

Notes: * A growing degree day is one in which the mean temperature is greater than a base value that must be exceeded 

for crop growth to occur. For maize, this base value is 10 ℃. 

3. Methodology 

We developed a methodological framework that is presented in Figure 3 and that is designed to 

quantify the ability of a machine learning model to identify pixels as maize or non-maize under 

scenarios with limited training data quantity, various data collection methods, and type of satellite-

derived variables used. The overarching approach was to  

1. define a common modeling pipeline that trains and evaluates a maize classification model 

for a given data set, 

2. feed the modeling pipeline with each data set in a sequence designed to emulate 

hypothetical scenarios of field data collection (varying the number of observations, the plot 

geolocation method, and the minimum plot size),  

3. vary the type of satellite data used by the modeling pipeline (optical only, radar only, both 

optical and radar), and  

4. compare evaluation metrics across different scenarios. Figure 6 depicts the overall structure 

of the study. 
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Figure 3: Workflow 

 
 

3.1. Maize classification pipeline 

A random forest supervised classification model was chosen for the task of pixel-level satellite-

based crop type classification. The random forest model was chosen because of its prevalence in 

related research literature (Jin et al. 2019), due in part to it possessing a good balance between 

complexity and performance. The maize classification pipeline comprised four stages: 1) feature 

pre-selection, 2) hyperparameter tuning, 3) model training, and 4) model evaluation. Different 

portions of the survey data were used for each stage, as explained below.  

 

The complete data set of surveyed plots in Malawi was divided into subsets for model training, 

validation, and performance testing (i.e. evaluation). We stratified the data set by district and crop 

type (maize and other crops), then divided the records into train, validation, and test subsets (70, 

15, and 15 percent of total). Stratifying by geography and crop type ensured that train, validation, 

and test subsets shared the same balance of crop and non-crop plots. No stratification by year was 
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applied. Figure 4 below shows the spatial distribution of plots by district across train, validation, 

and test subsets. The same sampling design was employed in Ethiopia (~13,000 plots)  

 

Figure 4: Distribution of plots across districts in a) train, b) validation, c) and test subsets 

 

                 a) b)                                             c)  

 
Notes: Color indicates number of plots. 

 

Training and validation subsets were used in the maize classification pipeline stages 1 through 3, 

while the test subset was reserved for model evaluation only.  

 

Feature pre-selection was implemented to prevent model overfitting due to a high number of 

features (for example, in Malawi: 60 features from S2, 40 from S1, 3 from topography, and 3 from 

weather). Pre-selection was performed for each data set passing through the pipeline, rather than 

the complete data set, as feature importance may vary with data set properties (e.g. minimum plot 

size). Only features with a high Mutual Information score (Equation 3) against the observed 

dependent variables were kept, such that no two remaining high-ranking features had a correlation 

of 0.8 or more. See Appendix Table A2 for a listing of all features and selected features. 

 

Equation 3 

𝑀𝐼(𝑋; 𝑌) = ∫  ∫  𝑓(𝑥, 𝑦) 𝑙𝑜𝑔
𝑓(𝑥, 𝑦)

𝑓(𝑥)𝑓(𝑦)
𝑑𝑥𝑑𝑦 

 

(where 𝑋and 𝑌are two continuous variables with joint p.d.f 𝑓(𝑥, 𝑦)) 

 

A hyperparameter tuning process was designed to minimize overfitting on the training data while 

maximizing classification performance. A range of values for each of six model parameters were 

tested in an automated process. Model parameters used in the tuning process included: number of 

preselected features to use, number of trees in the forest, maximum number of features to consider 



 

17 

when looking for the best split in a tree, maximum tree depth, minimum number of samples 

required to split an internal node, and minimum number of samples required to be at a leaf node. 

Model parameters were selected for each data set by considering feedback from the automated 

tuning process, in addition to modeler expertise. Models were trained and values for in- and out-

of-sample predictions were logged.  

 

Each model was evaluated on its ability to correctly distinguish between maize and non-maize 

pixels in the testing segment of the data set (out-of-sample). We calculated two performance 

metrics: accuracy (Equation 4) and the Matthews’ Correlation Coefficient (MCC, Equation 5). 

Accuracy measures the fraction of correct predictions to total predictions. An accuracy score of 1 

represents perfect prediction, and 0 indicates perfectly wrong prediction. MCC improves on the 

standard accuracy score in cases where the observed prevalence of one prediction class (e.g. not 

maize) is much larger than other classes. An MCC score of +1 represents a perfect prediction, 0 

represents random prediction, and -1 an inverse prediction.  

 

Equation 4 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    

 

Equation 5 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

(where 𝑇𝑃 =True Positives, 𝐹𝑃 =False Positives, 𝑇𝑁 =True Negatives, and 𝐹𝑁 =False 

Negatives) 

 

3.2. Survey data subsets in accordance with plot area 

Burke and Lobell (2017) and Jin et al. (2017) demonstrated that plot size can influence modeled 

crop yields due to rounding errors. Models trained on observations that exclude very small plots 

(e.g. < 0.2 ha) commonly perform better because smaller plots can include satellite data pixels that 

are affected by heterogeneous land use around plot edges. In order to conduct experiments on the 

effect of a minimum plot size threshold on crop classification accuracy, we created four copies of 

the stratified and split data set where training data was filtered to include only plots with areas 

greater than 0 ha, 0.05 ha, 0.1 ha, 0.15 ha, and 0.2 ha. We retained plots of all sizes in the validation 

and test subsets to evaluate each model with real-world plot size distributions. The histogram in 

Figure 5 below shows the distribution of plot areas, and Figure 6 shows the distribution of training 

plot counts by district when constrained by plot area. Testing the effect of plot area thresholds in 

Ethiopia was not possible due to the absence of plot boundaries in the survey data.  
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Figure 5: Distribution of plot areas (ha) 

 
Figure 6: Distribution of plots in train subset across districts if the size of plots were required to be greater than 0.05 

ha, 0.1 ha, 0.15 ha, and 0.2 ha (from left to right) 

 
3.3. Modeling data collection scenarios 

We applied to the maize classification pipeline a series of data sets designed to emulate data 

collection scenarios. We described in the “Data” section how, in the case of Malawi, the three 

types of EO data, seven plot geolocation methods, five minimum plot size thresholds for training 

data may influence maize classification performance (in Ethiopia there were fewer factors). For 

each of these 105 scenario data sets, we also included a range of sample size constraints to 

articulate tradeoffs between data collection effort and classification performance. We defined 

subsamples of each data set where the amount of training data was constrained to between 2% and 

100% (unconstrained) of the total, iteratively increasing the amount of data available to the 

modeling pipeline in steps of 2 percentage points. Subsampling of training data was also done in 

a stratified manner (by district and class label). Each subsample was passed through the maize 



 

19 

classification pipeline and evaluation results were recorded. In total, we tested 26,250 scenarios, 

comprising: 

 

1. 7 geolocation methods - boundary points, centroid, convex hull, corner, hull mean, plot 

points, and plot mean 

2. 50 data subsets - 2% to 100% subsets of training data, at an increment of 2% points 

3. 5 area thresholds - 0, 0.05, 0.1, 0.15, and 0.2 ha 

4. 3 feature types - optical only, radar only, both optical and radar 

5. 5 replications to capture variability due to random sampling 

 

To compare performance across countries, we applied a similar workflow to the Ethiopia survey 

data set. However, due to the limitations of that data set, we only tested the corner point geolocation 

method, with no area threshold, and with optical data only. 

4. Results and discussion 

We conducted sensitivity analyses to understand how survey data properties, especially their 

number and geolocation method, affect the performance of maize classification predictions. We 

constructed a maize classification model for each unique combination of the data collection 

scenarios and compared performance across these scenarios. In this section, we present the drivers 

of maize classification performance by first focusing on the effects of survey sample size and 

geolocation method, then plot area thresholds, and finally the source of satellite data used.  

 

4.1. Effect of the approach to georeferencing plot location 

 

Maize classification accuracy scores across geolocation methods typically fell within 2.5 

percentage points of each other, with gaps increasing with the number of plots used for model 

training (Figure 7a). The variation in maize classification performance across geolocation methods 

was more pronounced in the MCC curves (Figure 7c), with the “hull mean” and “plot mean” 

methods producing the most significant performance advantage. 

 

The difference in the accuracy and MCC training curves arises because MCC takes into account 

all the four confusion matrix categories (true positives, false negatives, true negatives, and false 

positives), thus providing a more balanced measure of performance. This becomes especially 

important when we consider geolocation strategies where a number of training points are collected 

for a single plot, such as “boundary points”, “convex hull”, and “plot points” - they further increase 

the imbalance between maize and non-maize observations in the training data set. For this reason, 

these three geolocation methods show worse MCC performance.   
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In nearly all cases, the centroid method outperformed corner point method. If only a single GPS 

point is collected by data collectors, that location should be near the center of the plot. The 

performance of corner point method was similarly poor in both Malawi and Ethiopia, demonstrated 

by MCC plots for both countries (Figures 7c and 7d). The plot mean and hull mean methods 

outperformed all the other methods. Hence, if plot boundaries or multiple corner points are 

available, the results show that aggregating pixels in the plot (e.g. by taking the mean) is preferable 

to sampling many pixels from the plot.  

 

Increasing the number of training plots led to an increase in MCC in most cases (Figure 8).  When 

only a small fraction of training observations was available (less than 1,000 plots), geolocation 

methods where a number of training points can be constructed (such as “boundary points”, “convex 

hull”, and “plot points”) performed better than others. However, with larger sample sizes (greater 

than 2,000 plots), “plot mean” and “hull mean” outperformed other methods. The “centroid” 

geolocation method performed similarly to “plot mean” and “hull mean,” except when nearly all 

of the plots were used for training (around 7,000 plots) in which case “plot mean” and “hull mean” 

methods outperform the “centroid” method. Lastly, corner points from about 7,000 plots gave 

roughly the same performance as using the “plot mean” or “hull mean” geolocation strategy on 

approximately 3,000 plots.  
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Figure 7: Training curves showing a) test accuracy (Malawi), b) test accuracy (Ethiopia), c) test MCC (Malawi) and 

d) test MCC (Ethiopia) as a function of training set size for each geolocation strategy in Malawi ((a) and (c)), and for 

corner point geolocation method in Ethiopia ((b) and (d)). Each training curve is aggregated over 5 trials. The curves 

shown in the left subplots are aggregated using the trials as is, and the ones on the right are aggregated after first 

smoothening each trial using a lowess estimator. All figures in the remainder of the results section use the smoothened 

trials.  

 

a) 

 
b) 
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Figure 7 (Continued): Training curves showing a) test accuracy (Malawi), b) test accuracy (Ethiopia), c) test MCC 

(Malawi) and d) test MCC (Ethiopia) as a function of training set size for each geolocation strategy in Malawi ((a) 

and (c)), and for corner point geolocation method in Ethiopia ((b) and (d)). Each training curve is aggregated over 5 

trials. The curves shown in the left subplots are aggregated using the trials as is, and the ones on the right are aggregated 

after first smoothening each trial using a lowess estimator. All figures in the remainder of the results section use the 

smoothened trials.  

 

c) 

 
d) 
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Figure 8: Box plot showing MCC at different training set sizes for each geolocation strategy (Malawi), 𝑛 =

727, 2834, 4945, 7030 correspond to ~10%, 40%,70%and 100%of the training set respectively  

 
 

4.2. Effect of sample size 

Maize classification performance improves with additional observations, but marginal 

improvements rapidly diminish after only a small amount of data is available for training (Figure 

9). We found that the geolocation method affects not only classification performance, but also how 

quickly the model improves when provided with incrementally more observations (the “learning 

rate”). The “centroid,” “hull mean,” and “plot mean” geolocation methods typically had the highest 

learning rates when fewer data points were available, in addition to having better overall 

performance. The “corner point” method showed poor learning rates, especially when more than 

3,000 plots are available. We observed that the “corner point” learning rates for a given number of 

plots were higher in the Malawi case than in Ethiopia. 
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Figure 9: Trends showing diminishing marginal returns to sample size a) across all geolocation strategies in Malawi 

and b) for the corner point geolocation strategy in Ethiopia 

a) 

 
b) 
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Returns to sample size slowly vanish depending on geolocation strategy - at around 2,500 plots for 

“boundary points”, around 4,000 plots for “convex hull”, “hull mean”, “plot points”, and “plot 

mean,” and around 4,500 plots for “corner” and “centroid.” Peak MCC is calculated as the point 

where the returns to sample size diminish to <= 0.01 percentage points per 100 plots. The peak 

MCC obtained at these sample sizes (0.2 - 0.28) also varies by geolocation strategy (Figure 10a). 

In Ethiopia, the corner point method gave similar values for peak MCC, however the sample size 

needed to reach that peak was around 3,000 plots which is much lower than that for Malawi, 

indicating that the model stopped learning sooner in the case of Ethiopia (Figure 10b).  

 

The overall maximum MCC (0.21 - 0.31) varies by geolocation method as well (Figure 11a). The 

“boundary points” geolocation strategy is able to reach 90% of its maximum at around 2,000 plots, 

“centroid,” “convex hull,” and “plot points” at around 3,000 plots, and “corner,” “hull mean,” and 

“plot mean” at around 4,000 plots. Similar behavior was observed for the corner point method in 

Ethiopia (Figure 11b). 

 

Figure 10: Box plots showing the peak MCC and minimum sample size required to reach the same, a) for each 

geolocation strategy in Malawi, and b) for corner point method in Ethiopia.  

 

a) 
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Figure 10 (Continued): Box plots showing the peak MCC and minimum sample size required to reach the same, a) for 

each geolocation strategy in Malawi, and b) for corner point method in Ethiopia. 

 

b) 

 
 

Figure 11: Box plots showing the maximum MCC and minimum sample size required to reach ~90% of the same, a) 

for each geolocation strategy in Malawi, and b) for corner point method in Ethiopia 

 

a) 
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Figure 11 (Continued): Box plots showing the maximum MCC and minimum sample size required to reach ~90% of 

the same, a) for each geolocation strategy in Malawi, and b) for corner point method in Ethiopia 

 

b) 

 

4.3. Effect of minimum plot size 

Trends in the relationships between plot size thresholds and MCC suggest that in most cases, 

limiting training data with plot size criteria decreased MCC scores (Figure 12). The finding is 

consistent with the intuition that filtering out plots based on a minimum area threshold can 

significantly change the training data distribution as compared to the validation and/or test data, 

leading to overfitting. However, in the case of convex hull, filtering out plots by size had a positive 

effect on MCC. This could be attributed to the fact that in case of smaller plots, the convex hull 

approximation of a polygon boundary might lead to greater errors, making it preferable to train on 

bigger plots. We observed that crop type predictions performed better in large plots than in small 

plots, and that including a plot size threshold exacerbated differences in performance across plot 

sizes and decreased overall performance.  
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Figure 12: Effects of train plot size thresholds on test MCC (Malawi) 

 

 
 

4.4. Effect of satellite data type 

We tested the hypothesis that SAR imagery from S1 can be used to detect crop types, alone and in 

conjunction with optical imagery. However, we found that it was optical features alone that 

generally produced the most accurate predictions, irrespective of geolocation strategy and sample 

size. Using both optical and SAR features did not confer MCC gains over a baseline of just using 

optical features (Figure 13). 
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Figure 13: Effect of model features on prediction MCC (Malawi) 

 
 

4.5. Spatial variability of classification performance 

We inspected the spatial distribution of maize classification performance to identify significant 

spatial correlation that may suggest region-specific issues in the model configuration. Figure 14 

shows that while there exists a north-south gradient in accuracy (Figure 14a) the same pattern is 

not detectable for MCC (Figure 14b). This suggests that higher accuracy in the southern part of 

Malawi may be attributable to a higher concentration of maize production that results in an 

imbalance in crop types observed in the sample - precisely the motivation for including MCC as 

an evaluation metric. Figure 15 confirms that regional variations in classification performance are 
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not strongly correlated with the number of plots. In other words, the model successfully avoids 

overfitting to regions with a higher density of surveys. 

 

Figure 14: Map of Malawi showing test performance by district, using all the training data from the plot mean sampling 

strategy, with optical features, and no area threshold (single trial). The performance metric is a) accuracy and b) MCC.  

a)                                            b)

 
Figure 15: Scatterplots showing the relationship between test performance and the number of training plots by district, 

using all the training data from the plot mean sampling strategy in Malawi, with optical features, and no area threshold 

(5 trials). The performance metric is a) accuracy and b) MCC. 

a) b)

  
 

4.6. Implications of small changes in classification performance  

Through the above results, we have demonstrated that certain geolocation methods, area thresholds 

and satellite features perform better than the others in terms of accuracy and MCC metrics. 

However, the differences in performances are very small - e.g. Figure 10a shows that the peak 

MCC for all geolocation strategies varies in the range 0.20 - 0.28. We evaluated how these relative 

variations in performance translate into differences in national-level maize area estimations. We 

trained seven different models, one for each geolocation method, and using the area threshold and 
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satellite feature set that performed best for each geolocation method (Table 7). Henceforth in this 

section, each model is referenced by the name of the geolocation method. 

 

Table 7: Testing scenarios used for model training  

Geolocation method Area threshold Satellite features  Out of sample MCC 

Boundary points 0 Optical only 0.21 

Centroid 0.05 Optical and SAR 0.24 

Convex hull 0.2 Optical only 0.21 

Corner 0.05 Optical only 0.23 

Hull mean 0 Optical only 0.25 

Plot points 0 Optical only 0.24 

Plot mean 0.05 Optical only 0.26 

 

Each model was then used to estimate the probability that each 10-meter pixel in Malawi was 

maize (a 0 to 1 continuous variable) during the 2018/19 rainy season. The pixel-level maize 

probabilities were converted into a binary classification using a threshold. Pixels with a maize 

probability above 0.6 were classified as maize, and otherwise are classified as non-maize. Absent 

objective data on which to empirically calibrate the classification threshold value, we selected a 

threshold higher than the typical value (0.5) in order to reduce the overclassification of pixels in 

maize resulting from the overrepresentation of maize plots in our training data set. Data set users 

can select a threshold value that suits their use case. 

 

We used these maizeland maps in conjunction with a cropland mask (showing seasonal cropland 

coverage) trained on crowdsourced land cover labels (see Appendix) over Malawi to estimate 

which pixels were cropped with maize in a particular season. Specifically, we first used the 

cropland mask to remove all pixels in Malawi that were not cropped. We then used each of our 

trained maize classification models to identify cropped pixels where maize was present. The 

process resulted in seven different maizeland maps, one for each geolocation method. We 

calculated the sum of maize pixel areas in the country separately for each geolocation method 

(Table 8). 
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Table 8: Malawi maize area as obtained by seven different classification models 

Classification model Out of sample MCC Total maize area - 2018/19 

rainy season (million ha) 

Boundary points 0.21 2.27 

Centroid 0.24 2.17 

Convex hull 0.21 2.46 

Corner 0.23 2.15 

Hull mean 0.25 1.94 

Plot points  0.24 2.41 

Plot mean 0.26 1.99 

Mean across models 0.23 2.19 

 

We observed in the maize area tabulations that the convex hull and plot points geolocation methods 

tended to over-classify pixels as maize - consistent with early observations in this paper. Hull mean 

and plot mean methods showed the most conservative area estimates, possibly because these 

models take advantage of most information from a single plot while also preventing over-

representation of maize in the training data. 

 

Furthermore, Table 9 below shows the relative difference between the plot mean method and each 

other maize classification method. We chose the “plot mean” method to represent the “best 

available” method and for each other model we tallied the number of pixels (and their total area) 

that disagreed with its maize/non-maize prediction. For example, pixels classified as one crop type 

by the plot mean method, but as the other crop type by centroid method, are considered to be in 

disagreement.  

 

Table 9: Area misclassified as maize/non-maize under different classification models, as compared to ‘Plot mean’ 

which was the best performing model 

Classification model Difference in out of 

sample MCC 

Total area with 

disagreement (million ha) 

Boundary points -0.05 0.84 

Centroid -0.02 0.48 

Convex hull -0.05 0.69 

Corner -0.03 0.95 

Hull mean -0.01 0.22 

Plot points -0.02 0.55 
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These results show that while the differences in performance metrics between different modeling 

scenarios are not very large, small differences can multiply over space leading to substantial 

differences in maize area estimation. Hence, there is value in achieving small performance gains 

anchored in better training data.  

 

Finally, after evaluating maize classification performance in Malawi and Ethiopia, we generated 

10-meter resolution rasters of area cultivated with maize for both countries over the period of 

2016-2019. Table 10 provides an overview of these rasters. After creating the rasters of probability 

of maize cultivation, we generated binary maizeland masks for each country and season in two 

steps. We first used our country- and season-specific cropland rasters to remove all pixels that 

were not cultivated with any crops. Pixels with probability of (any) crop cultivation less than 40 

percent were assumed to be non-cultivated. Subsequently, we used our country- and season-

specific maizeland rasters to identify which of the cultivated pixels were cultivated with maize. In 

Malawi, pixels with probability of maize cultivation greater than or equal to 60 percent were 

assumed to be cultivated with maize. The comparable threshold was 50 percent in Ethiopia. 

 

Table 10: Specifications of predicted maizeland rasters in Malawi and Ethiopia 

Country Maize classification 

model specifications 

Seasons trained on Seasons predicted on 

Malawi Plot mean geolocation 

method,  

0.05 ha area threshold, 

Optical features only 

2017/18 rainy season, 

2018/19 rainy season 

2015/16 rainy season 

2016/17 rainy season 

2017/18 rainy season 

2018/19 rainy season 

Ethiopia Corner point geolocation 

method,  

No area threshold,  

Optical features only 

2018 meher season 2016 meher season 

2017 meher season  

2018 meher season  

2019 meher season 

 

5. Conclusions 

Satellite data sources have tremendous potential for amplifying the insights available from 

household and farm surveys. The research presented here advances our understanding of how to 

collect optimal plot-level survey data that can train and validate remote sensing models for high-

resolution crop type mapping. Specifically, we quantify the interactive effects of (i) plot size, (ii) 

approach to georeferencing plot locations, and (iii) size of the training data set on the performance 

of a machine learning-based maize classification model.  

 

The results show that collecting a complete plot boundary is preferable to competing approaches 

to georeferencing plot locations in large-scale household surveys and that seemingly-small erosion 

in maize classification accuracy under less preferable approaches to georeferencing plot locations 
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consistently results in total area under maize cultivation to be overestimated - in the range of 0.16 

to 0.47 million hectares (8 to 24 percent) in Malawi vis-a-vis the results from the best performing 

model (i.e. plot mean). The analysis reveals that collecting GPS coordinates of the complete set of 

plot corners, as a second-best strategy, can approximate full plot boundaries and can in turn train 

models with comparable performance. 

  

Furthermore, when only a few observation plots (fewer than 1,000 plots) can be visited, full plot 

boundaries or multiple corner points provide significant gains vis-a-vis plot corner points or plot 

centroid. With mid-sized samples (3,000 to 4,000 plots), plot centroids can produce similar 

performance to full plot boundaries. With large sample sizes (around 7,000 plots), plot centroids 

fall behind full plot boundaries. If only a single GPS point is to be gathered by data collectors, that 

location should be near the center of the plot rather than at the plot corner. However, 

georeferencing plot centroids should be understood as a third-best strategy for remote sensing 

model training purposes. The findings suggest that classification performance almost always peaks 

before or at around 4,000 plots under the preferred geolocation strategies - corresponding to 

roughly less than 60 percent of the training data. As such, it is better to collect high-quality plot 

boundaries from 4,000 plots as opposed to corner points from 7,000 plots. 

 

Moreover, we demonstrate that no plot observations should be excluded from model training based 

on a minimum plot area threshold - another important note for future surveys. Finally, the 

experiments to quantify the effect of satellite data sources on crop type classification performance 

suggest that optical features alone can provide sufficient signal to maximize prediction quality. 

We observed only small differences between models built only with optical features and those 

using optical and SAR features. In the case of maize area mapping in Malawi, the potential benefits 

offered by SAR - providing signals unaffected by cloud cover - were offset by additional noise 

introduced with SAR imagery. 

 

Many outstanding questions remain for future research. Ongoing and future work should focus on 

improving the predictive power of the maize classification pipeline and gauge the sensitivity of 

our recommendations for alternative crops and countries. Crop classification accuracies of 0.9 or 

greater are not unusual in the literature, though small plot sizes in the African context may limit 

realistically attainable accuracy. Improvements may be gained by removing pixels with few cloud-

free observations during the growing season. Experimenting with alternative machine learning 

approaches and an expanded set of geospatial covariates may increase performance as well. 

Further work is also needed to distinguish between intercropped and monocropped (“pure stand”) 

maize plots in order to a) improve classification performance, b) support the creation of intercrop 

maps and area estimates, and c) lead to continued refinements of downstream research related also 

to satellite-based crop yield estimation. Related to the latter, future research should similarly 

identify the minimum-required volume of and approach to survey data collection that would yield 

optimal data for training and validating remote sensing models for high-resolution crop yield 
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estimation. Moreover, documenting the accuracy of out-of-season predictions (e.g. using data 

collected in 2018 to train a model to predict 2019 outcomes) and the extent of decay in model 

accuracy over time would reveal the required temporal frequency of ground data collection and 

the relative importance of capturing season-specific conditions. Finally, research on object-based 

classification and automated detection of plot boundaries using computer vision techniques may 

additionally help in reducing the data collection requirements for crop area and yield estimation. 
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Appendix 

Appendix Table A1: Summary statistics of pixel-level S2 observation frequency (after pre-processing) within each 

agricultural season in Malawi 

  2016 2017 2018 2019 

Mean 22.12 17.79 27.23 27.64 

Median 19.04 15.00 23.05 24.05 

Variance 216.06 129.74 301.34 324.91 

Min 1 1 1 1 

Max 178 135 216 227 

  

Appendix Table A2: Example of feature pre-selection for the case of Malawi 

GDD* GCVI_sin2 NDTI_cos1* NDVI_rmse RDED4_variance 

Ptot* GCVI_t NDTI_cos2* NDVI_sin1* SNDVI_constant 

Tavg GCVI_variance* NDTI_mean NDVI_sin2* SNDVI_cos1 

aspect* NBR1_constant* NDTI_r2* NDVI_t SNDVI_cos2 

elevation* NBR1_cos1* NDTI_rmse* NDVI_variance SNDVI_mean 

slope* NBR1_cos2* NDTI_sin1 RDED4_constant* SNDVI_r2* 

COUNT NBR1_mean NDTI_sin2* RDED4_cos1* SNDVI_rmse* 

GCVI_constant NBR1_r2* NDTI_t RDED4_cos2 SNDVI_sin1 

GCVI_cos1 NBR1_rmse* NDTI_variance* RDED4_mean SNDVI_sin2 

GCVI_cos2* NBR1_sin1 NDVI_constant RDED4_r2* SNDVI_t 

GCVI_mean NBR1_sin2* NDVI_cos1* RDED4_rmse* SNDVI_variance* 

GCVI_r2* NBR1_t NDVI_cos2* RDED4_sin1*   NDVI_sin2 

GCVI_rmse* NBR1_variance NDVI_mean* RDED4_sin2*   

GCVI_sin1 NDTI_constant* NDVI_r2 RDED4_t*   

Notes: * Indicates that the feature was retained after pre-selection process 

  

We constructed a cropland mask layer to capture where annual crops are grown in the region’s 

primary season in a given year. The value of each pixel is a continuous value between 0 and 1 

indicating the estimated probability that the land in the pixel was predominantly cropped. Derived 

from Sentinel-2 imagery, the nominal spatial resolution is 10-meter. 
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The methods for developing the cropland maps were similar to those employed for crop type 

mapping, with a few differences. The cropland maps were created by combining various earth 

observation (EO) data sets with land cover type labels in order to train a random forest model that 

predicts the probability that a pixel is cropped or not. The EO data sources used to create 

independent variables were the same as for crop type mapping - Sentinel-2 for multispectral 

reflectances (10-meter resolution) and Shuttle Radar Topography Mission (30 m resolution) for 

topography features including elevation, slope, and aspect, and (in the case of Malawi) the aWhere 

daily observed weather API (0.1 deg resolution for sub-Saharan African countries) for total 

precipitation, average temperature, and growing degree days (GDD) during the cropping season. 

  

Sentinel-2 imagery (S2) was preprocessed by 1) converting of top-of-atmosphere reflectance 

values to surface reflectances using a simple linear regression model, and 2) masking out of pixels 

containing clouds, shadows, haze, snow etc. using Atlas AI’s custom anomaly detection model. 

Once preprocessed, one band and five vegetation indices (VIs) were retained or calculated for all 

available S2 images (Appendix Table A3). Similar to crop type mapping, multi temporal collection 

of bands and indices was utilized to capture changes in vegetation phenology over time using 

harmonic regression models. 

  

Appendix Table A3: Sentinel-2 bands and indices used for land cover mapping 

Band / Index Name Central wavelength / Index formula Satellite 

RDED4 Red Edge 4 865 nm Sentinel-2 

GCVI Green Chlorophyll Vegetation Index  Sentinel-2 

NBR1 Normalized Burn Ratio 1  Sentinel-2 

NDTI Normalized Difference Temperature 

Index 
 Sentinel-2 

NDVI Normalized Difference Vegetation 

Index 
 Sentinel-2 

SNDVI Smoothed Normalized Difference 

Vegetation Index 
 Sentinel-2 

  

We developed a collection of land cover type observations by manually labelling randomly 

selected locations within the target geographies. Referring to high resolution basemaps from 

Google Maps, users were asked to select the land cover type best describing the 10x10-meter pixel 
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around each random point. Land cover classes included field crop, tree crop or plantation, other 

vegetation, water, or swamp, building or road, and desert or bare. We assumed that land cover 

types remained constant over the time period of mapping (2016-2019) and did not collect year-

specific land cover records. Limited availability of high-resolution basemaps, and lack of temporal 

information about them, prevented year-specific data collection. Frequencies of land cover types 

used for cropland mapping in Malawi and Ethiopia are shown in Appendix Table A4. We collapsed 

land cover types other than “Field crop” into a single category “other”. 

   

Appendix Table A4: Observation counts of land cover classes by country 

  Malawi Ethiopia 

Field crop 464 477 

Tree crop or plantation 21 66 

Other vegetation 711 1,251 

Water or swamp 166 24 

Building or road 73 59 

Desert or bare 71 193 

Total 1,506 2,070 

  

The pipeline for cropland classification comprised three stages: 1) feature pre-selection, 2) 

hyperparameter tuning, and 3) model training. The process for feature pre-selection was the same 

as described in Section 3.1 - only features with a high Mutual Information score against the 

observed dependent variables were kept, such that no two remaining high-ranking features had a 

correlation of 0.8 or more. 

  

Hyperparameter tuning was designed to minimize overfitting on the training data while 

maximizing classification performance. A range of values for each of five model properties were 

tested using a 5-fold cross validation approach with folds stratified by district. Stratifying by 

geography ensured that all five folds shared the same distribution. Model parameters were selected 

for each data set by considering feedback from the automated tuning process, in addition to 

modeler expertise. 
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The best model was chosen for its ability to correctly distinguish between crop and non-crop pixels 

in the validation segment of the data set (out-of-fold). We selected the random forest parameter 

set that maximized the out-of-fold Matthews Correlation Coefficients (MCC). The best models in 

Ethiopia and Malawi had MCC scores of 0.52 and 0.44 and accuracies of 0.85 and 0.75, 

respectively. 

  

The selected models for each country were used to estimate the probability that each pixel in the 

related region was cropland (0 to 1 continuous variable). The pixel-level maize probabilities were 

converted into a binary classification using a threshold. Pixels with a maize probability above 0.4 

were classified as crop, and otherwise are classified as non-crop. 
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