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Abstract 

This paper assesses the relationship between the length of recall and nonrandom error in agricultural survey 

data. Using data from the World Bank’s Living Standards Measurement Study–Integrated Surveys on 

Agriculture in Malawi and Tanzania, the paper shows that key input and output variables are systematically 

related to the length of the recall period, indicating the presence of nonrandom measurement error. With 

longer recall periods, farmers report greater quantities of harvest, labor, and fertilizer inputs. Farmers list 

fewer plots as the recall period increases. The paper argues that it is plausible that farmers overestimate 

plot-level outcomes, or they forget some of their more marginal plots due to longer recall periods. The 

analysis also finds evidence of measurement error related to the length of recall in common measures of 

agricultural productivity. The size of the recall effect typically varies between 2 and 5 percent per additional 

month of recall length, which is economically significant. With data reliability affecting policy 

effectiveness, improving agricultural survey data quality remains an important concern. Mainstreaming 

objective measures where possible and reducing the risk of recall error through shorter recall periods appear 

to be promising avenues to improve the quality of key variables in agricultural surveys.  
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1. Introduction 

For many developing countries, boosting agricultural productivity and incomes of small food producers are 

key policy objectives in the effort to alleviate poverty and improve food security. The international 

community has also embraced those goals, making them prominent targets in the Sustainable Development 

Goals (SDG) monitoring agenda under SDG 2, Zero Hunger.1 High-quality, reliable farm output and input 

data are indispensable both for measuring progress towards the SDGs and for effective policy and program 

design and analysis.  

Household and farm surveys are the most important source of agricultural data, rivalled in some countries 

by administrative data. In all measurement, survey-based or otherwise, there is some amount of 

measurement error. In surveys, the necessary reliance on imperfect respondent recall is a common source 

of error. Measurement in agricultural surveys in low-income countries is particularly difficult because 

agricultural operations are complex and seasonally variable, respondents are often illiterate, familiarity with 

standard units of measures is the exception rather than the norm, and a host of other factors. When data are 

of poor quality, and particularly when they are affected by systematic biases, policies based on that 

information may turn out to be less effective, if not misguided.   

Methodological research shows that survey design matters and that conscious efforts to adopt improved 

design and survey administration choices can contribute significantly to minimizing measurement error, 

including recall error,2 and improve the quality of agricultural survey data in developing countries (Carletto 

et al., 2015). This paper contributes to these efforts by focusing on the length of the recall period and how 

it affects the reliability of agricultural survey data. The length of the recall period is thought to be associated 

with recall decay, in which survey respondents forget details of events or forget events entirely, leading to 

reporting inaccuracies (Sudman and Bradburn, 1973). In agricultural surveys, recall length also often differs 

across the various activities recorded because farming activities, such as planting, plot maintenance, or 

harvest, take place at different times during the agricultural year. Depending on the timing of survey 

administration, respondents may be asked to recall the details of events sometimes many months in the past 

and the recall period may vary substantially across households or farms in the same sample if the fieldwork 

is completed over several months. In addition, some countries have two or more cropping seasons in one 

agricultural year and agricultural activities can be very different in both extent and nature depending on the 

season, which can make it even harder to recall events correctly.  

Survey designers and planners have some control over the length of the recall period by choosing the number 

and timing of field visits to farms. This choice, however, has clear cost implications. Visiting households or 

farms multiple times in order to shorten the length of the recall period is more expensive and logistically 

demanding than collecting information only once during the agricultural year. In practice, surveys differ 

widely with respect to the number and timing of visits.3 Survey designers may also choose to rely on more 

 
1 Especially relevant are indicators 2.3.1 Productivity of small-scale food producers and 2.3.2 Income of small-scale food 

producers. 
2 See, for example, Kasprzyk (2005), Zezza et al. (2016), Gaddis et al. (2019) and Kilic et al. (2018).  
3 For example, the Tanzania National Panel Survey relies on one visit per household per year to collect information about 

Tanzania’s two cropping seasons. Data collection begins after the main season’s harvest and is rolled out over the course of 12 

months. The AGRIS model, developed as part of the Global Strategy for Agricultural and Rural Statistics and published at the end 

of 2017 (Global Strategy to improve Agricultural and Rural Statistics, 2017), proposes a core module administered once per year 
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objective ‘gold standard’ measures of key variables, such as GPS land area measurement or crop cutting, if 

only for a subsample of farms. That choice, too, has cost implications. To evaluate the trade-off between 

quality and cost, survey designers require an empirically-informed understanding of the extent to which data 

quality varies with differences in the recall period, among other data quality considerations. Policy makers 

and other data users benefit from an appreciation of the limitations and biases in existing data related to recall 

length. 

Previous work by Beegle et al. (2012a) found no consistent evidence of significant recall length effects in 

agricultural surveys, using data from the early 2000s. In contrast, in this paper, we find a significant effect 

of the recall length on key agricultural statistics. We take advantage of the more recent availability of high-

quality and very detailed agricultural survey data to overcome some of the limitations of those data and 

assess and quantify the impact of the recall length on the quality of agricultural data. Using data from 

nationally representative surveys conducted by the National Statistical offices of Tanzania and Malawi with 

support from the World Bank’s Living Standards Measurement Study – Integrated Surveys on Agriculture 

(LSMS-ISA) program, we find that longer recall periods are associated with overreporting of plot-level 

outcomes – production quantity, labor input, and fertilizer input – consistently across the three data sets in 

the analysis. At the same time, respondents appear to forget listing plots as the recall period increases. Our 

results point to the need to devise and promote the adoption of survey design choices that minimize this 

source of measurement error.  

The remainder of the paper is structured as follows: Section 2 reviews the literature on error in the 

measurement of agricultural outcomes, especially that related to recall length. Section 3 describes the data 

used, the variables generated, and the empirical strategy this analysis employs. Section 4 presents the main 

results. Section 5 discusses conclusions, policy implications, and offers recommendations.  

 

 

2. Background and related literature 

This paper contributes to a large body of literature exploring the effect of respondent recall on measurement 

accuracy in survey data. Systematic reviews of this literature are provided in Biemer et al. (2011), Bound 

et al. (2001), Groves and Lyberg (2010), and Meyer et al. (2015), among others. The role of recall error in 

survey data has been explored in a range of topics, including consumption expenditure and food intake (e.g. 

Beegle et al., 2012b; Troubat and Grünberger, 2017; Backiny-Yetna et al., 2017; Brzozowski et al., 2017; 

Engle-Stone et al., 2017; D’Alessio, 2017; Schündeln, 2018; Zezza et al., 2017), household enterprises (De 

Mel et al., 2009; Liedholm, 1991) and income measurement (Moore et al., 2000). 

One strand of the literature focuses on the cognitive processes underlying survey response and has built an 

understanding of how these can lead to measurement error. Sudman and Bradburn (1973) distinguish 

between recall decay and telescoping. Telescoping refers to inaccurately remembering timing of events, 

leading to an event of interest incorrectly being moved into the reference period, which, in turn, may lead 

 
at the end of the main agricultural season, complemented by an Economy module implemented in four visits during the agricultural 

year. Similarly, the Uganda Annual Agricultural Survey 2019 (AAS), is planned with a post-planting and a post-harvest visit in 

both agricultural seasons, for a total of four visits.  In contrast, many LSMS-ISA surveys are now implementing two visits, one at 

the end of the main planting season and one at the end of the main harvest. Finally, some specialized farm surveys visit 

households/farms multiple times over the course of the agricultural year. 
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to over-reporting. In recall decay, respondents forget details of events or forget events entirely. The length 

of the recall period is arguably the most important driver of recall decay. As the recall length increases, 

recall decay occurs, and respondents no longer carry the requested information in memory, they turn to 

reconstruction strategies (Moore et al., 2000). Common reconstruction strategies include basing the 

response on typical behavior or average circumstances, which may lead to reporting error; whether it is 

nonrandom depends on the type of reconstruction strategy and may be related to respondent characteristics, 

such as cognitive ability and education. Reconstruction is also associated with rounding of quantities, which 

is common in all domains of subjective reporting (Roberts and Brewer, 2001) and for agriculture has been 

documented for instance with respect to land area measurement by Carletto et al. (2011). Finally, the 

salience of events is thought to counteract recall decay as respondents are able to recall salient events more 

easily, though some research has found salience being associated with over-estimation (see discussion in 

Bound et al., 2001).  

There is some evidence of the effect of recall error on each of the outcomes of interest of this study – land 

input, crop production, labor and agricultural input use in low-income settings. Beegle et al. (2012a)  

explore the effect of recall length on the reliability of both agricultural input and output data, while others 

have focused on error affecting particular aspects of measurement of the agricultural production process 

(Arthi et al., 2018; Gaddis et al., 2019; Kilic et al., 2018; Zezza et al., 2016).  

Regarding the measurement of agricultural land, a recent literature explores the biases in farmer-reported 

land area estimates (e.g. Carletto et al., 2011; De Groote and Traoré, 2005; Dillon et al., 2019; Goldstein 

and Udry, 1999; Keita and Carfagna, 2009; Kilic et al., 2017; Schøning, 2005), though these studies do not 

explore the role of recall length in affecting the error in farmer-reported land area. Two recent studies, Arthi 

et al. (2018) and Gaddis et al. (2019), find that respondents tend to undercount the number of plots under 

cultivation when using end-of-season recall to elicit the information. 

With respect to crop production measurement, Beegle et al. (2012a) find no consistent evidence that the 

length of the recall period affects farmers’ harvest estimates in data from Kenya, Malawi, and Rwanda from 

the early 2000s. In contrast, Deininger et al. (2012) use a different setup to assess recall error: they compare 

production estimates from farmer recall at the end of the season to production estimates based on a 

continuously administered harvest diary for a wide range of crops in Uganda. They find that harvest 

quantities based on end-of-season recall diverge significantly from those recorded in harvest diaries, which 

are deemed more reliable. In most cases, end-of-season recall is associated with under-reporting, especially 

for extended-harvest crops such as cassava or banana. Cash crop production, in contrast, is significantly 

over-reported. Similarly, Kilic et al. (2018) compare weekly harvest diaries to a 12-month recall period and 

a 6-month recall period each. All methods are benchmarked against crop-cutting estimates, considered the 

‘gold standard’ for estimating crop production. The authors show significant under-reporting in the recall 

data, especially with the 12-month reference period, relative to the diary and crop cutting methods. A 

different strand of the literature found that reported harvest quantity is inversely related to land area: 

respondents tend to over-report maize harvest on small plots and under-report it on large plots (Desiere and 

Jolliffe, 2018; Gourlay et al., 2017). 

Beegle et al. (2012a) assess the effect of recall length on farmer reported labor inputs, finding no consistent 

evidence of recall decay affecting reported quantities. Arthi et al. (2018) and Gaddis et al. (2019), on the 

other hand, find significant measurement error in recall-based farm labor estimates. The two studies 
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compare end-of-season recall with weekly work diaries, which are considered more reliable, among farmers 

in Tanzania and Ghana. They find that end-of-season recall leads to over-reporting of labor use at the 

individual-by-plot level (‘recall bias’) relative to diary-keeping, but at the same time to undercounting of 

plots cultivated and of individuals who worked on them (‘listing bias’). In contrast, Gollin (2019) argues 

that diary methods may lead to under-counting of farm labor given the eclectic set of tasks that ‘farm labor’ 

comprises. Seymour et al. (2017) find significant differences in the recording of time spent working 

between recall and diary methods in Uganda and Bangladesh. 

Finally, empirical evidence on recall error (and measurement error in general) in agricultural inputs data 

(fertilizer, agro-chemicals, seeds, and others) is scant. Beegle et al. (2012a) find little systematic evidence 

for recall bias in farmer self-reported fertilizer usage in Malawi and Kenya, though results vary somewhat 

depending on respondent characteristics. Gollin (2019) argues that farmers likely recall quantities (and 

prices) of purchased inputs mostly accurately but also points to evidence (e.g. in Ashour et al., 2017; Bold 

et al., 2017) suggesting that fertilizer and agro-chemical counterfeiting and adulteration may leave farmers 

unsure about the quality of product they apply to their land. 

 

3. Data and empirical strategy 

Data 

The study uses three data sets from nationally representative household surveys in Malawi and Tanzania: 

the Tanzania National Panel Survey (TNPS) 2012/13, the Fourth Malawi Integrated Household Survey 

2016/17 (IHS4) and the Malawi Integrated Household Panel Survey 2016/17 (IHPS). 

Tanzania NPS 2012/13 is the third wave of the Tanzania National Panel Survey and was collected between 

October 2012 and November 2013. The NPS sample used a multi-stage clustered sampling design covering 

a total is 5,015 urban and rural households. With households selected to be interviewed over the course of 

14 months to account for seasonality in consumption, the data have variation in the recall period, which can 

be exploited to assess the impact of recall decay on data quality. The reference agricultural season is the 

long rainy season of 2012, which all farms in the sample reported on. 

The IHS4 2016/17 includes both a cross-sectional and a panel component. The cross-sectional sample 

includes 12,480 households surveyed in 780 enumeration areas. Households were visited once throughout 

the 12 months of fieldwork between April 2016 and April 2017. The IHS4 data were collected in the same 

way as the NPS 2012/13 and used for analysis following the same rationale. For our analysis, we use the 

2015/16 rainy season as the reference agricultural season. Data collection began in April 2016, at which 

point not all households had finished the 2015/16 rainy season harvest. These households instead reported 

on the harvest of the previous, 2014/15 rainy season. For comparability, we dropped these households from 

the analysis. In addition, some households stated having harvested in the 2015/16 season, but harvest dates 

revealed respondents were referring to the previous season, and vice versa. We dropped these households 

as well.   

The IHPS 2016/17 sample includes 1,989 households which were interviewed twice between April 2016 

and April 2017, in one post-planting and one post-harvest visit relative to the 2015/16 rainy season. Given 
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this two-visit setup, the recall length is shorter, especially for planting-related activities. Including this data 

set thus allows us to assess if recall effects vanish with somewhat shorter recall periods.  

All three surveys are part of the Living Standards Measurement Study – Integrated Survey on Agriculture 

(LSMS-ISA) and, as such, the data sets contain an integrated household and agricultural component. The 

household survey component collects detailed socioeconomic information, including household-level data 

on consumption, income, assets and housing, and individual-level data on demographics, education, and 

health. The agricultural component collects detailed information, among other items, on agricultural inputs 

used and outputs produced, as well as output disposition, at the plot-level. The integrated survey further 

allows breaking down which household members are involved in agricultural production, who owns the 

means of production, and who is responsible for managing the household farm’s plots of land.   

As ancillary data to validate our findings on farmer-reported crop production, we use the second round of 

the Methodological Experiment on Measuring Maize Productivity, Soil Fertility and Variety (MAPS) 

survey. The MAPS data, which Gourlay et al. (2017) discuss in detail, were collected in two rounds in 2015 

and 2016 in Uganda, containing 900 maize-growing households in round 1 and 489 in round 2. The MAPS 

survey employed objective and subjective survey methods to collect information on maize production (crop 

cutting), area, soil fertility, and maize variety identification. 

Outcomes of interest 

The analysis focuses on some of the agricultural outcomes of major policy interest, namely land input, crop 

production, labor and input use. The main dependent variable is the approximate length of the recall period 

between the interview and the activity relating to the outcome of interest (Table 1). 

Land input reporting is assessed in two ways. First, as the total number of agricultural plots (or parcels) 

cultivated by the household. This variable is simply a count of the households’ agricultural plots (and 

parcels) which respondents list at the beginning of the agricultural questionnaire of the survey. This 

information sheds light on whether a longer recall period leads households to forget listing some plots 

(Gaddis et al., 2019). The median (mean) number of plots listed per household is 2 in Tanzania NPS 2012/13 

(mean: 2.2 plots) and Malawi IHPS 2016/17 (mean: 2.1 plots) and 1 in Malawi IHS4 (mean: 1.6 plots; 

Table 2).  

Second, as the difference between GPS-measured plot area and farmer self-reported plot area. Given the 

prevalence of measurement error in land area reporting, LSMS-ISA surveys, including the data used in this 

analysis, implement an objective, GPS-based area measurement, while retaining farmer self-reported plot 

area alongside. Comparing these two measures allows assessing whether recall decay exacerbates the error 

in self-reported land area. This variable is constructed by subtracting the plot area variable based on GPS 

measurement from the self-reported plot area variable, so that area under-reporting has a negative sign 

while area over-reporting has a positive sign.  

Plot sizes, measured by GPS, differ substantially across the three data sets. In Tanzania NPS 2012/13, the 

average plot size of 1.23 hectares (median: 0.49 hectares) is much larger than in Malawi at 0.37 hectares in 

the IHS4 (median: 0.30 hectares) and 0.34 hectares in the IHPS data set (median: 0.26 hectares; Table 2). 
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The inverse relationship between measured plot size and error in self-reported plot size discussed in the 

literature is also common to all three data sets used in this analysis (Table A.2).  

Crop production is assessed, first, through the quantity of maize harvested per plot by the farm-household 

during the reference agricultural season. We choose maize since it is the most important staple crop in 

Malawi and Tanzania, though our findings on maize do not necessarily translate to other crops (see results 

in Deininger et al., 2012). In addition, we analyze the amount of maize harvest stored and the amount sold 

at the time of the interview. 

Harvest quantities are recorded separately for each crop and plot, and all surveys allowed for reporting in 

local non-standard units. To construct a standardized maize harvest quantity, non-standard units are 

converted into kilograms using correspondence tables specific to each survey. Stored and sold harvest is 

reported at the household level. The crop production variables are summarized for each dataset separately 

in Table 2. The median maize harvest quantity per plot is 200 kg in Tanzania NPS 2012/13 (mean: 303.7 

kg), 213.4 in Malawi IHS4 (mean: 320.5 kg), and 180 kg in Malawi IHPS 2016/17 (mean: 286.2 kg). While 

harvest per plot is similar, maize yield (harvest per area) is higher in Malawi IHS4 and IHPS 2016/17 than 

in Tanzania NPS 2012/13, where plots are larger on average (Figure 2, row 1).   

The three main surveys used in this analysis rely on farmer self-reporting of the quantity of maize harvested. 

This means that there is no approximately objective measure of maize harvest to benchmark the results. We 

therefore make use of ancillary data from the second round of the Methodological Experiment on Measuring 

Maize Productivity, Soil Fertility and Variety (MAPS). These data contain full crop-cuts (considered 

benchmark estimates) for maize of 211 entire plots. The data set has two main limitations for our analysis: 

the data collection was so swift that the recall length is short with little variation between 0 and 4 months, 

and, at 211 plots, the sample size is small. The full crop cuts are used to quantify the error in farmer-reported 

maize harvest and relate it to the length of the recall period. On those plots, the mean farmer-reported 

harvest is 159 kg (median: 70 kg), while the mean crop cut estimate is 113.5 kg (median: 53.45 kg; Table 

5). 

For farm labor inputs, the headline outcome is total person-days of labor used per plot during the reference 

agricultural season. The variable is constructed by summing person-days worked by all household members 

and hired workers in all activities related to crop production, which are recorded separately for each plot. 

Family labor makes up the lion’s share of total labor input in all three data sets, accounting for between 91 

percent in Tanzania NPS 2012/13, 92 percent in Malawi IHPS 2016/17, and 96 percent in IHS4 (cross 

section). Total labor input is somewhat higher in Tanzania at 70 person-days than in Malawi with 64 and 

62 person-days per plot in the cross section and the panel, respectively. However, given larger plot size in 

Tanzania, labor intensity (labor per area) is lower there than in the two Malawi samples (Figure 2, row 2). 

Twenty-six percent of plots in Tanzania NPS 2012/13 use hired labor, compared to 13 percent in Malawi 

IHS4 and 29 percent in IHPS 2016/17 (Table 2). Once again, the data exhibit an inverse relationship 

between labor intensity and plot size (Figure 2, row 2).  

For an analysis of recall length, the total person-days variable has some drawbacks. As it is constructed by 

summing various work activities (planting, fertilizing, harvest, etc.), which all take place at different times 

during the agricultural season, there is no one single recall period for total labor person-days. To account 

for this, we assess whether the effect of recall length differs by type of activity (planting, fertilizing, harvest, 
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etc.) using appropriately defined recall length variables for each activity (Table 1, Table 3). Of the activities, 

most person-days are used in planting and maintenance activities, with fewer person-days used in harvest 

(Table 2). We also assess whether the recall effect differs by type of worker (household, hired). Labor 

inputs are summed to the plot-level, rather than assessed separately for each worker on each plot, because 

one respondent reports all labor inputs for a given plot, so that this measure likely best captures the recall 

effect. 

Finally, input use is assessed through incidence of organic fertilizer application per plot and incidence and 

quantity of inorganic fertilizer application per plot. This analysis is possible because the three surveys 

record fertilizer use at the plot-level. Fertilizer use is considerably more common in Malawi than in 

Tanzania, for which Malawi’s inorganic fertilizer subsidy program is likely responsible. Organic fertilizer 

is applied on 19 and 20 percent of plots in Malawi IHS4 and panel, respectively, and on 10 percent of plots 

in Tanzania NPS 2012/13. The difference is larger for inorganic fertilizer, which 53 and 61 percent of plots 

receive in Malawi IHS4 and IHPS 2016/17, respectively, compared to 9 percent in Tanzania. Among those 

plots to which inorganic fertilizer is applied, the applied quantities are similar across all three data sets at 

66 kg per plot in Tanzania NPS 2012/13, 62 kg per plot in Malawi IHS4 cross-section, and 58 kg per plot 

in IHPS 2016/17 (Table 2). Application intensity (inorganic fertilizer applied per hectare) is again lower in 

Tanzania, owing to larger plot sizes, while fertilizer intensity is generally decreasing in plot size across all 

three data sets (Figure 2, row 3). 

We apply the double Median Absolute Deviation method for outlier detection and correction to all 

constructed continuous variables in this analysis, that is, harvest quantity, storage and sales quantity, total, 

family, and hired labor person-days, organic and inorganic fertilizer quantity applied (Leys et al., 2013). 

Determining recall length 

The length of the recall period cannot be determined exactly in the survey data for two reasons. On the 

hand, we do not observe directly when farmers engage in the activities of interest (planting, fertilizing, 

working, harvesting, etc.). Instead, some information about the timing of the activities can be retrieved from 

farmer-reported dates and the cropping calendar. On the other hand, farmers engage in these activities over 

extended time periods, so that strictly no single recall length exists. We therefore proxy the length of the 

recall period for each outcome of interest.  

During the interview, farmers are prompted to list all plots used for crop cultivation since the beginning of 

the agricultural season, so that this proxy for recall length seems an appropriate choice. The beginning of 

the planting season is determined by each country’s cropping calendar and is identical for all households in 

each data set.  

First, for harvest (and storage and sales) quantity, we use as recall length the distance in months between 

the interview date and the end of the harvest period. In all three surveys, farmers are asked to report harvest 

dates and this information is used to construct this second recall length variable. Harvest dates are likely 

recorded with error, being subject to memory decay over time in the same way as the outcome variables. 

To address this concern, we use the mode of harvest end dates at the cluster (enumeration area) level, rather 

than each household’s individual maize harvest date, provided that there are at least 10 observations per 

cluster. Where there are fewer than 10 observations per cluster, the variable is instead based on the next 
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higher level of geographical aggregation (ward, district).4 The interview date varies at the household level, 

so that the recall length variable for harvest input for plot i of household j is  

 𝑇𝑖 = 𝑅𝑒𝑐𝑎𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ𝑖
𝐻𝑎𝑟𝑣𝑒𝑠𝑡 =  (𝐷𝑎𝑡𝑒𝑗

𝐼𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤  −  𝑚𝑜𝑑𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝐷𝑎𝑡𝑒𝑖
𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑒𝑛𝑑)) (1) 

 

Table A.1 in the appendix presents an overview of the differences between the raw and corrected recall 

length variables for the three data sets. To assess whether this correction of the recall variable drives our 

results, we estimate one specification including the measure of difference between the raw and corrected 

recall variable.  

Second, in the analysis of land inputs, the recall length to the beginning of the planting season is an 

appropriate choice. The beginning of the planting season likely varies regionally. In Malawi IHS4 and IHPS 

2016/17, farmers report the month in which they began planting each of their plots. This information is 

used to capture the variation in season start. The recall variable is constructed following the same procedure5 

as for recall to harvest end, such that  

𝑇𝑖 = 𝑅𝑒𝑐𝑎𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ𝑖
𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔

=  (𝐷𝑎𝑡𝑒𝑗
𝐼𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤 −  𝑚𝑜𝑑𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝐷𝑎𝑡𝑒𝑖

𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔 𝑝𝑙𝑜𝑡
)) (2) 

 

In Malawi IHPS, the land information (and most input information) is collected during the first visit, and 

so the date of the first visit is used. The Tanzania NPS 2012/13 does not record individual planting dates. 

Instead, we rely on regionally disaggregated maize sowing time information from Arce and Caballero 

(2015) and the FAO Crop Calendar. The recall length to planting start variable for household j in region k 

is therefore:  

𝑇𝑗 = 𝑅𝑒𝑐𝑎𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ𝑗
𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔𝑁𝑃𝑆

=  (𝐷𝑎𝑡𝑒𝑗
𝐼𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤  −  𝐷𝑎𝑡𝑒𝑘

𝑆𝑜𝑤𝑖𝑛𝑔
) (3) 

 

Third, proxying the length of the recall period for labor inputs is challenging. Labor in crop production is 

spread out across the entire cropping cycle and comprises a set of disparate activities, from plot preparation, 

to planting, to fertilizing and weeding, to harvest and post-harvest work. The activities again differ in 

duration and salience and are carried out in part by household members and in part by hired workers – 

which is why we assess not only total labor input but analyze each activity in detail. The additional 

challenge in the task of constructing the recall length variable is that the timing of these activities is not 

always explicitly recorded. In Malawi IHS4 and IHPS 2016/17, farmers report the date of planting for each 

plot, how much later fertilizer was first applied, and the harvest period. In contrast, in Tanzania NPS 

2012/13, only the timing of the harvest is recorded. Recall length variables therefore differ by labor activity 

and survey: for total labor input, we use recall length to planting from equations (2) and (3), respectively. 

Since total labor is the sum of the various activities during the reference season, this recall variable is a 

rough approximation; for harvest and post-harvest labor, recall length to end of harvest, as per equation (1), 

is used; for planting and plot preparation, and weeding and fertilizing, we again use recall length to planting 

(equations (2) and (3)).  

 
4 This is the case in 11 percent of observations in Tanzania NPS 2012/13, 10 percent in Malawi IHS4, and 3.5 percent in Malawi 

IHPS.  
5 Mode of beginning of planting on plot at the cluster, as long as there are at least 10 observations per cluster. If fewer than 10 

observations per cluster, the variable is based on the next higher level of geographical aggregation. This is the case in 5.2 percent 

of observations in Malawi IHS4 and 1.6 percent in IHPS 2016/17.  
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Finally, constructing a sensible proxy for the recall length of fertilizer input has some of the same challenges 

as for labor. However, the application of fertilizer input covers shorter periods than the more continuous 

task of working on the plot. In Malawi IHS4 and IHPS 2016/17, we use the recall length to planting 

(equation (2)) when analyzing input use in the full sample (that is, both plots on which fertilizer was used 

and plots on which it was not used). When assessing fertilizer quantity reporting among plots receiving 

fertilizer, we can instead use the recall length to the first application of fertilizer on the plot. Fertilizer 

application is reported in weeks after planting the plot but transformed to months for the purpose of the 

recall variable. Since fertilizer application happens after planting, the recall length for fertilizer is shorter 

than for planting: 

 

 𝑇𝑖 = 𝑅𝑒𝑐𝑎𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ𝑖
𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟

= 𝑅𝑒𝑐𝑎𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ𝑖
𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔

−  𝑚𝑜𝑛𝑡ℎ𝑠 𝑡𝑜 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖 (4) 

 

In Tanzania NPS 2012/13, we once again use recall length to planting (equation (3)), lacking information 

on fertilizer application timing. 

All recall variables are coded in increments of one month as this is the unit in which harvest, planting, and 

other dates are recorded in the data. The various recall variables vary in length between and within surveys. 

Recall length to end of harvest ranges from 2 to 18 months in Tanzania NPS 2012/13 (mean: 9.2), 0 to 13 

months in Malawi IHS4 (mean: 8.9),6 and 3 to 12 months in Malawi IHPS 2016/17 (mean: 5.7; Table 3; 

Figure 1).  

Recall length to planting varies between 7 and 25 months in Tanzania NPS 2012/13 (mean: 14.7) and 

between 4 and 18 months in Malawi IHS4 2016/17 (mean: 13.4), though there are very few observations 

with a recall length shorter than 9 (Figure 1). In Malawi IHPS 2016/17, the range of recall length varies 

between 4 and 9 (mean: 5.7; Table 3). Most of the outcomes of interest which we analyze using recall length 

to beginning of season were collected during the first visit. The two-visit structure thus cuts the average 

recall length to beginning of planting to 5.7 months, relative to 13.4 (Malawi IHS4 2016/17 cross section) 

and 14.7 months (Tanzania NPS 2012/13). Recall length to first fertilizer application is minimally shorter 

than recall length to planting, suggesting most farmers start fertilizing quite soon after they finish planting 

(Figure 1; Table 3).  

Since this analysis exploits variation in the timing of Tanzania NPS 2012/13 and Malawi IHS4 fieldwork, 

rather than explicitly randomizing by recall length to agricultural activities of interest, the data are not 

evenly spread across time and space (Figure 1). This is the case because, while the interviews are spread 

across 12 months, not all interviewed households are agricultural households and agricultural activities vary 

at the household or cluster level. Households also differ on observable characteristics over time, many of 

which are likely correlated with the outcomes of interest. To address this issue, we introduce a set of control 

variables. These fall into the following categories: regional and enumerator dummies, respondent 

characteristics (e.g. gender, age, education, whether respondent is plot manager), household characteristics 

 
6 There are three cases of a recall length to harvest end of zero months, which implies that in these cases farmers have finished 

their harvest within the month of being interviewed. This scenario can realistically occur in Malawi IHS4 because farmers are asked 

to identify the last rainy season completed, and the agricultural questionnaire is administered in reference to that season. The 

agricultural season spans a period of November to April and the three cases at hand are from households interviewed in April of 

2016, so that it is very plausible that these farmers finished harvesting just before the interviews took place. 
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(e.g. consumption aggregate or wealth index, shocks, household head gender, education, age), plot 

characteristics (e.g. crop loss, land area, irrigation). 

There are some marked differences in household characteristics and agricultural outcomes between the 

Malawi IHS4 and IHPS 2016/17 samples. This may be the result of several factors. First, the IHPS is a 

panel whose sample households have been interviewed several times before since the first round of the 

IHPS in 2010. Respondents are likely familiar with the survey process and the survey instrument and may 

have become better at responding to questions. At the same time, those respondents may act strategically 

and take shortcuts in answering in order to reduce the time of the interview, as they are familiar with the 

questionnaire structure. It is also likely that the sample of agricultural households in the panel survey that 

we select for this analysis have been active in farming for an extended period of time, having been followed 

since 2010. Second, data on agricultural outcomes were collected in two rather than in one visit. This means, 

on the one hand, that the recall length for many agricultural outcomes of interest is cut in half. It may further 

lead to differences in recorded agricultural outcomes beyond what the recall length can explain. 

Unfortunately, we cannot distinguish between the recall effect, the effect of forming part of a long-running 

panel, and the effect of a post-planting visit beyond recall length with the IHS4 and IHPS 2016/17 data sets, 

though these issues would make for interesting future research.   

Empirical strategy 

We use the following specification to assess the effect of the recall length on outcomes of interest: 

 𝑌𝑖 = 𝛼 + 𝛽1𝑇𝑖 + 𝛿𝕏𝑖 + 𝛾 + 𝜇 + 𝜀 (5) 

 

with 𝑌𝑖 the outcome variable of household i (or plot i depending on the level of analysis), 𝑇𝑖 explanatory 

variable of interest (planting or harvest recall length in months, depending on the outcome of interest), 𝕏𝑖 

a vector of control variables, 𝛾 an indicator for region, 𝜇 an enumerator fixed effect, and 𝜀 the error clustered 

at the EA level. Provided 𝕏𝑖 captures all relevant confounding factors, the length of the recall period, 𝑇𝑖,  

should not be correlated with the outcome variables if farmers accurately recall them. Therefore, if 𝛽1, the 

coefficient on 𝑇𝑖, is significantly different from zero, this is evidence of systematic measurement error. 

We estimate equation 3 with OLS when assessing the uncensored continuous outcome variables of interest, 

maize production, error in self-reporting, labor input in person-days. The number of plots listed and 

cultivated is a count variable, so we asses this outcome with both OLS and Poisson. For the binary outcome 

variables use of hired labor, use of organic and of inorganic fertilizer, we make use of Probit. Finally, the 

quantity of inorganic fertilizer applied per plot is truncated at zero. On the considerable share of plots to 

which no fertilizer is applied, the fertilizer quantity variable takes the value zero, while it is continuous and 

positive for the share of plots to which fertilizer was applied. We deal with this case by running both a Tobit 

model on the truncated variable as well two separate regressions, a Probit model on the binary choice 

whether inorganic fertilizer is used at all and OLS on the continuous quantity of application conditional on 

use.  

To verify that the linear baseline specification in equation 3 accurately captures the relationship between 

recall length and the outcomes of interest, we run a set of regressions with added polynomial terms 
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(quadratic, cubic) of 𝑇𝑖 (recall length). We compare the linear and non-linear models using a variant of the 

Bayesian Information Criterion (BIC’) as a goodness-of-fit measure to guide which model is best suited. 

Recall error may be exacerbated by certain household, individual, or farm characteristics. We explore 

interaction effects between the recall length and plot size, respondent characteristics (gender and education), 

and whether the respondent is also the plot manager. The latter is relevant because, to an extent, it is in the 

survey designers’ purview to enforce that the respondent be the plot manager. 

 

4. Results 

We find that the recall length has a significant impact on reported outcomes in all areas of interest of this 

analysis. Farmers report significantly higher quantities of plot-level variables, that is maize harvest, labor 

and fertilizer input, as the recall length increases. In contrast, farmers report fewer cultivated plots of land 

in longer recall periods.   

Land 

Households list significantly fewer plots (and parcels) as the recall period increases. Results from the 

baseline linear OLS specification with a full set of controls, shown in Figure 3 and Figure 4 (and Table A.3 

in the Appendix), are consistent across the three data sets. The results from a Poisson regression are in line 

with those from OLS. The magnitude of the effect varies by survey, however. It is small for Tanzania NPS 

2012/13 at 0.03 fewer plots per month and Malawi IHS4 (cross section) at 0.05 plot per month, but larger 

in Malawi IHPS 2016/17 (panel) at 0.1 plot per month. This may be the result of several factors, which we 

cannot directly assess. 

The results from a quadratic specification confirm the overall negative relationship between recall length 

and plots listed (Table A.4). The BIC’ goodness-of-fit comparison suggests that the linear model is 

preferred in Tanzania NPS 2012/13 and Malawi IHS4 data and that the quadratic model provides a better 

fit in Malawi IHPS (Figure 4).  

We have no way to observe the ‘true’ number of plots household-farms in our data operate, so we cannot 

ultimately determine the direction of the reporting bias. However, it seems plausible that farmers forget 

some of their less important plots as recall decays over time, as was observed previously for example in 

Gaddis et al. (2019) and Arthi et al. (2018).7  

Turning now to farmer self-reported land area, we assess the effect of recall length on the magnitude of 

error in self-reported plot area, comparing it to the objective GPS-based measure of plot. We split the 

sample in plots whose area was over-stated and plots whose areas was under-stated (positive and negative 

 
7 The analysis in this paper relies on a different setup than Arthi et al. (2018) and Gaddis et al. (2019), who use a methodological 

experiment in which farmers are randomly assigned to report on labor inputs either through end-of-season recall modules or in 

weekly visits during the agricultural season. In contrast, we rely on variation in recall length stemming from variation in interview 

timing. The findings in Arthi et al. (2018) and Gaddis et al. (2019) are therefore a combination of a recall effect (end-of-season 

modules imply longer periods of time to recall) and a data collection effect (weekly visits in which respondents are prompted to 

report in detail on their plots). Our findings isolate and underscore the former.  
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error). We find no consistent evidence of the self-reporting error being associated with recall length: only 

in the Malawi IHS4 data set, the overstatement of plot area increases in recall length at a rate significantly 

different from zero. All other specifications show no significant correlation (Table A.5). Overall, this 

suggests that respondents’ difficulties in accurately estimating land area are not associated with memory 

decay over time. It is plausible that farmers at the time of the interview still operate many of the same plots 

as at the beginning of the season and therefore have a belief or estimate of plot area based on relatively 

current information.8  

Crop production 

The maize harvest quantity as reported by farmers increases with the length of the recall period. The results 

are consistent across all three data sets, with point estimates ranging from 4.9 kg (2 percent) in Tanzania 

NPS 2012/13, to 11.97 kg (4 percent) in Malawi IHS4, to 15.85 kg (8 percent) for each additional month 

of recall length in the Malawi IHS4 panel (Figure 5, Table A.6, Table A.7). Based on BIC’, a quadratic 

specification yields a better fit of the relationship in Malawi IHS4, suggesting that here the recall length 

effect is strongest in the first 3 to 8 months, leveling off after that (Table A.8, Figure 6).  

The results support the hypothesis that there is non-random measurement error in the farmer-reported 

quantity of maize harvested related to the length of the recall period. However, this result is valid only if 

no relevant confounding factor is omitted in the regression. There is one potential confounding factor that 

merits discussion: the weight of maize produced can be reported in different states of the crop. For example, 

at the time of harvest, maize is still on the cob. Before being sold, stored, or consumed, maize grains may 

be removed from the maize cob and dried. In this process, the weight of the same harvest may vary 

depending on the state in which its weight is reported. Moreover, this may be related to the length of the 

recall period if, for example, farmers more often report the harvest weight of maize on the cob immediately 

after the harvest and the weight of dried grains more often as more time passes between the harvest and the 

interview. This, in turn, could mean that the observed recall effect is the result of changes in reported harvest 

state over time. We assess this possibility using information on the harvest state – shelled (grain) and 

unshelled (on the cob) – which is available for Malawi IHS4 and IHPS 2016/17 data in three steps. First, 

we assess whether the state in which harvest weight is reported changes with the length of the recall period. 

We find that the share of farmers reporting the weight of maize on the cob decreases with recall length at 

0.8 percentage point per month in Malawi IHPS 2016/17 and 0.4 percentage point in Malawi IHS4. Next, 

we include the state in which harvest was reported as a control variable in the main regression. Finally, we 

convert the quantity of unshelled maize (on the cob) to grain-equivalent shelled weight and then repeat the 

analysis with this new variable. The unshelled to shelled conversion factor was obtained from the MAPS 

experiment in which maize was weighed twice, before and after shelling. The main results are robust to 

these two specifications. Further, we assess whether the correction of the harvest date and hence of the 

recall length variable (section 3) drives our results. We estimate the main specification including the 

difference (in months) between the raw and the corrected harvest date variable (results not shown). The 

inclusion of this correction term is not statistically significant in any of the data sets nor does it meaningfully 

change the coefficient on the recall length variable.  

 
8 This does not mean that the estimate is correct (Carletto et al., 2011; De Groote and Traoré, 2005; Dillon et al., 2019; Goldstein 

and Udry, 1999; Keita and Carfagna, 2009; Kilic et al., 2017; Schøning, 2005). 
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As an additional robustness check, we assess the relationship between recall length and the quantity of 

maize sold and maize in storage (results not shown). The rationale is as follows: Absent measurement error, 

the quantity of maize harvested should not be correlated with the timing of the interview. In contrast, as the 

time between harvest and interview increases, the expectation is that households deplete their storage of 

harvested maize, while selling more of it. Thus, there should be a negative correlation between the time 

passed since harvest and maize in storage and a positive correlation with maize sold. Finding that this is not 

the case may point to some other underlying dynamic and cast doubt on the results. We thus test this 

hypothesis in the data. The data indeed reflect a negative relationship between time elapsed since harvest – 

that is, recall length – and the quantity of maize in storage. We also find a positive relationship between 

time elapsed since harvest and the quantity of maize households report they have sold. 

 

In light of the finding that reported harvest quantity increases with the recall period, the question of interest 

is whether this implies that harvest quantity is being increasingly over-reported the longer the recall period 

becomes. The logic of recall decay would suggest this is the case: farmers likely remember the amount 

harvested if the harvest has only just finished. But absent written records, they need to rely on inference or 

reconstruction more often if the harvest is many months in the past. If this logic holds, interviews conducted 

just after the harvest, with a short recall length, produce the most reliable estimates. Whether or not this 

logic holds is of course predicated on respondents having accurate knowledge of how much they harvested 

in the first place. Existing evidence shows that other factors, such as land area or respondent characteristics, 

are correlated with harvest mis-reporting, so even in cases of short recall periods self-reported harvest 

quantities may well be inaccurate.  

Resolving this question systematically would require comparing farmer-reported harvest quantities to more 

objective benchmark estimates, for example based on crop cutting. Crop cutting is not available in the three 

main data sets used for this analysis. As an ancillary analysis, we use the MAPSII data set to benchmark 

the farmer self-reported harvest against the more objective full-plot crop cuts. We replicate the main 

specification for the effect of recall length on farmer-reported harvest in the sample of plots for which a 

full-plot crop cut is available. Then, we quantify the reporting error (farmer-reported harvest quantity minus 

full plot crop cut quantity) and assess the effect of the recall length on the reporting error. We find a 

significant effect of the recall length on self-reported harvest as well as on reporting error (Figure 7). This 

suggests that farmers are indeed increasingly over-reporting harvest with longer recall periods, at least in 

this sample. 

Labor 

Reported farm labor per plot increases significantly with recall length. The effect size is similar in Tanzania 

NPS 2012/13 and Malawi IHS4 at 1.6 (2.3 percent) and 1.2 person-days (2.8 percent) per plot per month 

of recall length, respectively (Figure 8, Figure 9, Table A.9, Table A.10, Table A.11).9 A quadratic rather 

than linear specification for recall length suggests no mis-specification by the linear model, and the BIC’ 

analysis shows the linear model provides a better fit in both data sets (results not shown).  

 
9 The comparison with the Malawi IHS4 panel is omitted because in that survey labor inputs are collected partially in the first visit 

(labor used for land preparation and planting, ridging and fertilizing) and partially in the second visit (harvest and post-harvest 

labor). Thus, there is no one unique recall period against which to evaluate total labor input, rendering the comparison meaningless.  
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The concern with total labor days is that it is made up from different work activities with different timings. 

We therefore assess the recall effect separately for each type of activity: Land preparation and planting; 

weeding, ridging, and fertilizing; and harvest and post-harvest activities. Generally, the positive association 

between recall length and labor input holds across activities in all three data sets, though not all point 

estimates are significant (Figure 10). Recall length has the clearly largest and most significant level effect 

on reporting of labor dedicated to ‘weeding, ridging, and fertilizing’ (Figure 10,  

Table A.12, Table A.13, Table A.14). This category is arguably the least salient and captures labor applied 

on the plot between planting and harvest, a period of several months, which make these activities 

particularly hard to recall correctly. 

We also test family and hired labor input per plot separately. The total labor input results are driven by 

family labor. On the one hand, the number of family labor days make up a large share of total labor days. 

On the other hand, recall length has a significant effect on family labor days in all three data sets, but not 

on hired labor (Figure 8, Table A.9, Table A.10). Further, there is no significant effect of recall length on 

the number of family members reported to have worked per plot and per household (results not shown). 

The findings are consistent with plot-level over-reporting of labor inputs in long recall modules discussed 

in Arthi et al. (2018) and Gaddis et al. (2019).10 While we cannot benchmark our results against a more 

objective measure of farm labor, it seems plausible that respondents here too are over-reporting as the recall 

period increases. 

Inputs 

There are two main results regarding the effect of recall length on agricultural inputs (we analyze organic 

and inorganic fertilizer use in this study): first, respondents tend to report higher fertilizer quantities as the 

recall length increases. Second, respondents are slightly less likely to report incidence of fertilizer use, that 

is whether or not any fertilizer was applied to a given plot.  

We use a linear OLS specification with a full set of controls to estimate the effect of recall length on quantity 

of inorganic fertilizer applied per plot, conditional on fertilizer use. The effect size is large in Malawi IHPS 

2016/17 at 4.3 kg per plot per month (8.8 percent), and smaller in Malawi IHS4 at 0.9 kg (1.9 percent). In 

Tanzania NPS 2012/13, the coefficient has the same sign but is not statistically significant (Figure 12, Table 

A.15, Table A.16, Table A.17). Low fertilizer application rates lead to a small sample of households using 

inorganic fertilizer on their land at 675 of 7,322 plots, which may explain the recall effect being 

insignificant. The linear model is the preferred specification based on BIC’ analysis. 

Based on a Probit model, we find a small negative recall effect on the binary variable whether any inorganic 

fertilizer was applied in the case of Malawi IHS4 and IHPS 2016, and whether any organic fertilizer was 

 
10 Arthi et al. (2018) and Gaddis et al. (2019) find two countervailing types of reporting bias. First, end-of-season recall modules 

lead to an over-estimation of reported labor inputs per plot (‘recall bias’). Second, end-of-season recall modules lead to an under-

counting of plots listed and household members reported to have worked on them (‘listing bias’). Our results echo those findings: 

we find longer recall periods are associated with fewer plots listed and higher labor inputs reported. A key difference is that we 

find no evidence of farmers reporting fewer members having worked on each plot or on the entire farm. Moreover, Arthi et al. 

(2018) and Gaddis et al. (2019) find a significant educational gradient in recall bias, while we find evidence of education interacting 

with the recall effect. 
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applied in the case of Tanzania NPS 2012/13 (Figure 11); that is, respondents are slightly less likely to 

report having used fertilizer as the recall length increases. 

Recall error and other characteristics 

While our focus is on the effect of the recall length on data quality, we always control for respondent 

characteristics, including via interactions with the length of the recall. Most of the respondent characteristics 

(age, education, gender, whether respondents are also plot managers) have no significant impact on the 

direction or magnitude of the effect of the recall length.11 However, some are significantly correlated with 

our outcomes of interest. Female respondents tend to understate harvest and input quantities relative to male 

respondents. The same is true of respondents who are also plot managers (results not shown).12 In contrast, 

respondent education is neither strongly correlated with levels of reported outcomes nor does it impact the 

recall length effect.  

Unlike respondent characteristics, plot size consistently matters for the effect of recall length. In line with 

expectations, the recall effect on maize harvest quantity, labor and fertilizer inputs is attenuated, and 

sometimes even reversed, on larger plots in Tanzania NPS 2012/13 (Figure 14). Similarly, there is a 

significant interaction effect of recall length and plot size for harvest and fertilizer input in Malawi IHS4 

and IHPS (Figure 15). 

Recall error and productivity measurement 

This section explores the implications of the recall effect for agricultural productivity measurement, in 

which context the input and output variables discussed in this analysis are frequently studied. Interest is in 

three of the most common measures of agricultural productivity, yield (output per unit of land), output per 

day of work, and output per worker ( 

Table 6).  

The results discussed so far suggest that the impact of the recall length on the three productivity measures 

will vary. For yield (output per unit of land), the expected association is positive, since there is a positive 

effect of recall length on output (maize harvest), the numerator, while the plot area, measured with GPS, is 

not subject to recall error. For output per day of work, the results suggest an ambiguous effect. Both output, 

the numerator, and labor-days, the denominator, are positively associated with the recall length. The 

direction of the composite effect depends on which of the two dominates, and it is possible that there is no 

effect at all. Finally, for output per worker, the results suggest a positive recall effect. The recall effect on 

output, the numerator, is positive, and there is no effect on workers per plot, the denominator ( 

Table 6). 

 
11 Plots listed in the Malawi IHS4 cross section are the one case in which there is a significant interaction effect between respondent 

characteristics and recall length. Female respondents list fewer plots than male respondents (-0.52*** plots), but the effect of recall 

length is smaller among female respondents (-0.05** plots/month as opposed to -0.076*** plots/month). 
12 Plot managers are presumably best informed about harvest quantities and inputs used, suggesting that self-reporting from female 

respondents may be more reliable than that from male respondents. 
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Akin to the analysis discussed in the previous paragraphs, we use as a proxy for recall length the time in 

months between the interview day and the first day of fieldwork. This proxy has two advantages in the case 

at hand. First, productivity measures are composite indicators whose components – output, land area, labor 

inputs – each have different timing patterns, so that there is no obvious single recall length measure. Second, 

time between the interview and the beginning of fieldwork has a simple practical interpretation and can be 

determined by survey designers. We test the effect of the recall length both at the plot level and aggregated 

at the farm level in the Malawi IHS4 and Tanzania NPS 2012/13 data using an OLS specification as in 

equation 5.13  

The results are in line with the prediction. Maize yield at the plot-level increases by 3.1 percent with each 

additional month of fieldwork in Tanzania NPS 2012/13 and by 5.1 percent in Malawi IHS4 (at the 

household level: 2.2 percent and 5.2 percent, respectively; Figure 16, Table A.19, Table A.20). Output 

(maize harvest) per day of labor input is also generally positively associated with fieldwork length, with 

the effect ranging from null to 3.1 percent per month (Tanzania NPS 2012/13: null effect at the plot-level, 

1.9 percent at the household-level; Malawi IHS4: 2.7 percent at the plot-level, 3.1 percent at the household-

level; Table A.19; Table A.20; Figure 16). Finally, output per worker is also positively associated with 

fieldwork length, with the effect size ranging between 2.4 and 5.1 percent per month (Tanzania NPS 

2012/13: 2.4 at the plot-level, 2.5 percent at the household-level; Malawi IHS4: 5.1 percent at the plot-

level, 3.0 percent at the household-level; Table A.19; Table A.20; Figure 16). 

 

5. Conclusions, policy implications, and recommendations 

In this paper, we set out to evaluate the impact of the recall length and related design choices on the quality 

of key agricultural input and output data – land, labor, fertilizer, and production. Our results demonstrate, 

consistently across the three data sets used in the analysis, that the survey-based estimates of these variables 

depend on the length of the recall period, which indicates the presence of nonrandom measurement error of 

economically significant size. With longer recall periods, farmers report higher quantities of harvest, labor 

and fertilizer inputs, all three of which are recorded at the plot-level in our data sets. At the same time, 

farmers list fewer plots as the recall period increases. We have argued that it is plausible that farmers over-

estimate plot-level outcomes – harvest, labor and fertilizer inputs – while it is also plausible that they forget 

some of their more marginal plots, as their memory decays due to longer recall periods. We also show that 

the recall length has a meaningful impact on agricultural productivity measurement. 

The reliability of agricultural data matters for policy effectiveness. Policy makers and the international 

community recognize agricultural input, output, and productivity outcomes as integral to agricultural 

growth and food security, and a large body of empirical evidence supports this view. These outcomes have 

therefore been made priorities within several development frameworks. Under the Sustainable 

Development Goals (SDGs), target 2.3 is to double the agricultural productivity and incomes of small-scale 

food producers by 2030. The target is monitored through indicator 2.3.1, volume of production per labor 

unit – that is, one of the productivity measures we found were subject to measurement error related to the 

 
13 The Malawi IHPS 2016/17 data are omitted because the two-visit structure of that survey makes time between interview and 

beginning of fieldwork difficult to interpret.  
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recall length. Similarly, African Union’s (AU) Comprehensive Africa Agriculture Development 

Programme (CAADP) was conceived in 2003 to achieve economic growth, eliminate hunger, and reduce 

poverty through concerted investments in African agriculture. CAADP adopted the Malabo Declaration in 

2014 in which AU member states resolved, among other things, to double agricultural productivity and 

pledged to allocate at least 10 percent of public expenditure towards agriculture. The CAADP results 

framework monitors progress towards its goals through a set of priority indicators and guides member 

countries’ strategic investment decisions. CAADP target 2.1 – Increased agriculture production and 

productivity14 is comprised of five priority indicators, focusing on growth in agricultural production volume 

and value added as well as land and labor productivity. For instance, priority indicator 2.1.5 measures yield 

for the five AU priority commodities, of which maize is one; indicator 2.1.2 tracks the level of agricultural 

production.  

The results of our analysis show that recall error can lead to unreliable measurement of all these indicators 

at an economically significant level. This is especially true when it comes to monitoring their evolution 

over time. For illustration, maize yields in Africa (reflected in CAADP 2.1.5) have grown at an average 

annual rate of 0.8 percent between 2000 and 2017, according to FAOSTAT. Maize production (reflected 

partially in CAADP 2.1.2) has grown by an average of 3.9 percent per year during the same period. In 

comparison, our analysis indicates that an additional month in recall length can lead to a change of between 

2 and 5 percent in reported maize yields and 2 and 7 percent in the reported maize harvest quantity. Further, 

an annual growth rate of around 7 percent would be required to achieve SDG target 3.2 of doubling labor 

productivity within about 10 years. We find an additional month of recall length is associated with a 2 to 3 

percent increase in reported output per unit of labor. What this shows is that the recall effect is likely to 

introduce an amount of variability that makes tracking progress towards achieving SDG targets and 

CAADP goals challenging and sensitive to the survey design choices that affect the length of recall. Policy 

and investment priorities based on these indicators risk being ineffective or misguided. Improving data 

quality is critical to minimize this risk. 

The results lend support to ongoing efforts to mainstream more objective ‘gold standard’ measures of key 

variables into the design and implementation of surveys. The use of GPS devices to measure the area of 

agricultural plots is already considered best practice and incorporated into many surveys concerned with 

agricultural productivity and land use. In the field of production measurement, the practice of crop cutting 

is used in many national production estimations and other surveys, and our findings offer strong reasons 

for doing so systematically. Finally, when it comes to accurately measuring labor and fertilizer input, as 

well as counting all plots used in agricultural production, the use of diaries appears worth exploring.  

One strategy to improve agricultural data reliability by shortening recall periods and recall length variation 

in household and farm surveys is to field two visits, one in the post-planting and one in the post-harvest 

period, rather than just one. While this strategy has cost implications, as field teams need to visit farms 

twice rather just once, it has the additional advantage of providing countries with more frequent and timely 

data on planting in the ongoing agricultural season. Another avenue to explore is the use of higher-

 
14 CAADP Indicator 2.1. Increased agriculture production and productivity contains the following sub-indicators: 2.1.1 

Agriculture value added; 2.1.2 Agriculture production index; 2.1.3 Agriculture value added per agricultural worker; 2.1.4 

Agriculture value added per hectare of arable land; 2.1.5 Yields for the five AU priority commodities (cassava, yams, maize, meat, 

and cow milk). 
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frequency phone surveys to collect data on input and even output variables, though the data quality 

implications of such a survey design ought to be rigorously tested before mainstreaming.  

In sum, there is a need for survey practitioners and agencies charged with collecting agricultural sector data 

to carefully consider the data quality implications of survey design choices that implicitly affect the length 

of the recall period for the respondent, and to develop and promote the adoption of survey designs that can 

ensure data quality without excessive implications for the survey budgets and logistics.    



 

21 
 

Figures and Tables 

 

Table 1. Outcome and main explanatory variables of interest 

 

 
Dependent variable (𝑌𝑖) 

Unit of 

measurement 
Level of analysis 

Main independent 

variable (𝑇𝑖) 

Output/ 

Production 

Maize quantity produced 
kg 

 

Plot-level Recall length 

(months) to harvest 

end 

Harvest 

disposition 

Maize quantity sold Household/farm-

level Maize in storage 

Inputs – 

Land 

Agricultural plots and parcels listed and cultivated by the 

household 
number 

Household/farm-

level 
Recall length 

(months) to planting 

of plot* 
Difference between self-reported and GPS-measured plot 

land area 
hectares Plot-level 

Inputs – 

Labor 

Total labor 

inputs by type, 

household and 

external 

Total labor 
person-days 

Plot-level 

 

Recall length 

(months) to planting 

of plot* 

Household member labor 

Use of hired labor 
binary 

Labor by 

activity 

Plot preparation and planting labor  

person-days 
Plot-level 

 

Recall length 

(months) to planting 

of plot* 

Person-days in plot maintenance 

Person-days in harvesting and post-

harvest activities. 

Recall length 

(months) to harvest 

end 

Inputs – 

other 

Organic fertilizer use  

binary 

Plot-level 

Recall length 

(months) to planting 

of plot* 

Inorganic fertilizer use  

Inorganic fertilizer application quantity kg Recall length 

(months) to first 

fertilizer application* 

* In the Tanzania NPS 2012/13 survey, these variables are not available at the plot-level. Regional sowing season timing information is 

used instead. 
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Table 2. Outcome variables 

  Tanzania NPS 2012/13 Malawi IHS4 2016/17 Malawi IHPS4 2016/17 

 Outcome Mean Median SD N Mean Median SD N Mean Median SD N 

Land 

Parcels     1.426 1 0.667 6,799 1.780 2 0.999 1,803 

Plots 2.257 2 1.343 3,300 1.587 1 0.842 6,790 2.130 2 1.429 1,801 

Plots cultivated 1.874 2 1.253 3,300 1.532 1 0.818 6,790 2.014 2 1.338 1,801 

GPS measured area, ha 1.233 0.486 3.145 7,447 0.371 0.295 0.317 9,277 0.338 0.255 0.321 3,573 

Self-reported area, ha 1.164 0.405 3.743 7,447 0.362 0.405 0.261 10,379 0.360 0.304 0.328 3,805 

Error in self-reporting (SR-GPS, ha) -0.052 0.0202 0.516 5,396 -0.003 0.0121 0.150 9,267 0.0164 0.0283 0.152 3,571 

Harvest 

Maize harvest quantity (kg) 303.7 200 349.0 3,079 320.5 213.4 336.5 7,110 286.2 180 341.1 2,535 

Sales of maize (kg) 91.11 0 336.2 3,300 39.74 0 139.6 5,828 35.13 0 125.7 1,674 

Storage of maize (kg) 38.44 0 112.3 2,067 30.03 0 278.4 5,810 105.2 0 220.2 1,675 

Labor 

Total labor (person-days) 70.13 45 83.39 7,447 63.76 56 39.94 10,403 61.95 51 45.06 3,812 

Family labor (person-days) 63.52 40 78.39 7,447 61.27 54 40.11 10,403 57.32 47 44.97 3,812 

Hired labor (Y/N) 0.263 0 0.440 7,447 0.135 0 0.341 10,403 0.294 0 0.455 3,812 

Hired labor (person-days) 24.81 13 34.62 1,742 13.11 9 13.95 1,400 3.805 0 9.014 3,812 

Land prep + planting (HH person-days) 24.34 14 33.49 7,447 27.60 24 21.40 10,403 28.14 22 26.33 3,812 

Weeding + fertilizing (HH person-days) 25.86 15 33.18 7,447 22.82 19 18.54 10,403 21.47 16 20.48 3,812 

Harvest + post-harvest (HH person-days) 19.93 8 32.61 7,447 8.148 6 8.379 10,403 7.710 5 9.561 3,812 

HH members working on plot 2.320 2 1.747 7,447 2.377 2 1.294 10,403 2.752 2 1.550 3,812 

Inputs 

Organic fertilizer use (Y/N) 0.0974 0 0.296 7,447 0.187 0 0.390 10,403 0.201 0 0.401 3,812 

Inorganic fertilizer use (Y/N) 0.0928 0 0.290 7,447 0.533 1 0.499 10,403 0.609 1 0.488 3,812 

Inorganic fertilizer (kg) 6.175 0 36.61 7,447 33.17 10 45.75 10,403 35.23 20 44.69 3,812 

Inorganic fertilizer use (kg|>0) 66.55 50 102.2 691 62.39 50 45.98 5,531 57.86 50 44.40 2,321 

Productivity 

Maize yield (kg/ha) 1,053 0 793.3 4,971 756.2 0 596.4 3,841 527.6 0 373.8 2,616 

Labor intensity (person-days/ha) 229.1 0 183.6 1,013 208.1 0 177.4 726.8 138.1 0 88.00 889.6 

Labor productivity (output/person-day) 6.102 0 3.980 43.16 4.408 0 2.881 32.49 5.139 0 3.333 30.25 

Output per worker 129.6 0 88.55 776.9 134.2 0 90 824.2 118.6 0 72 780 

Fertilizer intensity (kg/ha) 128.2 0 42.60 18,533 187.1 0 101.1 5,148 12.92 0 0 6,178 

 Fertilizer intensity (kg/ha|>0) 241.1 1.602 164.7 18,533 292.2 1.602 205.9 5,148 140.8 0.414 79.71 6,178 
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Table 3. Recall length 

Variable Mean Min Median Max SD N 

 Tanzania NPS 2012/13 

Recall length, harvest 9.292 2 10 18 3.546 3,079 

Recall length, planting 14.71 7 14 25 4.068 7,447 

 Malawi IHS4 2016/17 

Recall length, harvest 8.843 0 9 13 2.475 7,110 

Recall length, planting  13.41 4 14 18 2.336 10,360 

Recall length, fertilizer 12.77 4 13 17 2.347 5,523 

 Malawi IHPS 2016/17 

Recall length, harvest 5.676 3 5 12 1.649 2,549 

Recall length, planting finish 5.662 4 6 9 1.087 3,592 

Recall length, fertilizer 5.046 3 5 8 1.108 2,187 

 
Table 4. Control variables for regression 

Group of control variables Xi Variables Malawi IHS4 and IHPS4 Variables Tanzania NPS 2012/13 

Respondent characteristics Respondent gender, age, education 

(years), literacy. 

Respondent age, gender, education 

(years). 

Household characteristics Drought shock, flood shock, income loss 

shock; agricultural asset index, 

household wealth index; household head 

literacy, gender, age; dependency ratio, 

household size. 

Household size, production shocks, 

household consumption expenditure, 

household head gender. 

Plot characteristics Plot owned, cash crop grown, erosion 

control terraces, swampland, fertilizer 

use, plot size, any hired labor, family 

labor input, pre-harvest losses, 

intercropped. 

Plot area; Main crop, irrigation, 

respondent is plot owner, respondent, or 

user; use of fertilizer; any hired labor; 

family labor input. 

Regional controls District dummies. Region dummies. 

Enumerator controls Enumerator dummies.  Enumerator dummies. 

 
Table 5. Maize harvest, MAPSII, full crop-cut plots 

Variable Mean Min Median Max SD N 

Full crop cut (CC) maize harvest, kg 113.5 0 53.45 1,633 178.6 211 

Self-reported (SR) maize harvest, kg 159.5 0 70 3,000 289.3 211 

Error in self-reporting, SR-CC, kg 46.00 -259.9 6.306 2,943 219.5 211 
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Figure 1. Distribution of recall length variables 

 
Figure 2. Local polynomial fit between input and output per area against area 
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Figure 3. Effect of recall length on plots listed and cultivated, point estimates 

 
Figure 4. Plots listed against recall length 

 
Figure 5. Effect of recall length on reported maize harvest, point estimates 
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Figure 6. Maize harvest quantity against recall length 

 
Figure 7. Self-reported harvest and error in self-reported harvest (self-report – crop cut), Uganda MAPSII 

 
Figure 8. Effect of recall length on labor inputs, point estimates 
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Figure 9. Total labor on plot against recall length. 

 
Figure 10. Effect of recall length on labor input by activity, point estimates 

 
Figure 11. Effect of recall length on whether respondent reported using fertilizer on plot, point estimates 
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Figure 12. Effect of recall length on reported fertilizer quantity per plot, point estimates 

 
Figure 13. reported inorganic fertilizer amount (kg|>0) against recall length 
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Figure 14. Selected outcomes against recall length at five quintiles of plot area, Tanzania NPS 2012/13 

 
Figure 15. Selected outcomes against recall length at five quintiles of plot area, Malawi IHS4 and IHPS 

 
Figure 16. Impact on key productivity measures, plot-level 
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Table 6. Selected productivity measures 

 

  

Productivity 

measure 

Construction Individual 

effects 

Expected 

recall effect 

Estimated 

recall effect 

Yield 

(Y/T)  

Production per plot/farm (Y) / Land 

area per plot/farm (T) 

Y↑, T∅ Positive Positive 

Output per day 

worked (Y/L) 

Production per plot (Y) / Total labor 

days per plot/farm (L) 

Y↑, L↑ Ambiguous Positive  

Output per worker 

(Y/I) 

Production per plot (Y) / household 

members per plot/farm (I) 

Y↑, I ∅ Positive Positive 
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Appendix 

A. Supplemental Tables 
Table A.1. Difference between raw and corrected recall length variables (months) 

Variable Mean Min Median Max SD N 

 Tanzania NPS 2012/13 

Recall length, harvest 1.010 0 1 6 1.040 3,079 

 Malawi IHS4 2016/17 

Recall length, harvest 0.419 0 0 6 0.653 7,110 

Recall length, planting 0.303 0 0 6 0.599 10,392 

 Malawi IHPS 2016/17 

Recall length, harvest 0.399 0 0 6 0.696 3,633 

Recall length, planting  0.350 0 0 7 0.658 2,566 

 
Table A.2. GPS plot area and error in self-reported plot area. 

 Tanzania NPS 2012/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 

Quintiles of plot area 

Rel. error 

(%) 

Plot area, 

GPS (ha) 

Rel. error 

(%) 

Plot area, 

GPS (ha) 

Rel. error 

(%) 

Plot area, 

GPS (ha) 

1st (bottom quintile) 68% 0.09 60% 0.08 118% 0.06 

2nd  30% 0.27 29% 0.19 46% 0.16 

3rd  9% 0.52 9% 0.30 20% 0.26 

4th -5% 1.04 -6% 0.44 2% 0.40 

5th (top quintile) -18% 4.35 -24% 0.85 -20% 0.82 

 

 
Table A.3. Linear regression results number of plots and parcels per household. 

 Tanzania NPS 12/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 

Dependent Variable 

Plots  

listed 

Plots 

cultivated 

Plots  

listed 

Plots 

cultivated 

Parcels  

listed 

Plots  

listed 

Plots 

cultivated 

Parcels  

listed 

Recall length, planting -0.0336*** -0.00854 -0.0530*** -0.0510*** -0.0346*** -0.102** -0.148*** -0.0530* 

 (0.00662) (0.00630) (0.00543) (0.00519) (0.00434) (0.0410) (0.0417) (0.0280) 

Observations 3,225 3,225 6,742 6,742 6,742 1,786 1,786 1,786 

Pseudo R-squared 0.190 0.158 0.253 0.245 0.183 0.274 0.253 0.220 

Controls Full controls Full controls Full controls Full controls Full controls Full controls Full controls Full controls 

Estimator OLS OLS OLS OLS OLS OLS OLS OLS 

 

Table A.4. Regression results number of plots listed per household, quadratic specification 

  Tanzania NPS 12/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 

Dependent Variable Plots Listed Plots listed Plots listed 

Recall length, season -0.0220 0.0184 -0.405 

 (0.0379) (0.0544) (0.384) 

Recall length2 -0.000385 -0.00277 0.0258 

 (0.00128) (0.00208) (0.0311) 

Observations 3,225 6,742 1,786 

Adjusted R-squared 0.190 0.253 0.274 

Controls Full controls Full controls Full controls 

Estimator OLS OLS OLS 

Joint F-Test 12.98 49.43 3.28 

 

Table A.5. Linear regression error in self-reported plot area relative to GPS area measurement, log-level OLS   

 Tanzania NPS 12/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 
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Dependent Variable Ln(Error in Self-Reported Plot Area (Self-Reported Area – GPS Area)) 

 Error>0 Error<0 Error>0 Error<0 Error>0 Error<0 

Recall length, planting -0.00632 -0.00213 0.0257*** 0.00377 -0.0242 -0.0113 

 (0.00877) (0.0105) (0.00534) (0.00534) (0.0305) (0.0314) 

Observations 1,612 1,411 7,416 5,738 2,008 1,281 

Adjusted R-squared 0.070 0.132 0.184 0.146 0.028 0.339 

Controls Full controls Full controls Full controls Full controls Full controls Full controls 

Estimator OLS OLS OLS OLS OLS OLS 

 

Table A.6. Linear regression results for maize harvest per plot 

 Tanzania NPS 12/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 

Dependent Variable Maize harvest (kg) Maize harvest (kg) Maize harvest (kg) 

Recall length, harvest 4.901** 11.97*** 15.85** 

 (1.983) (1.961) (6.996) 

Observations 2,979 7,094 2,261 

Adjusted R-squared 0.188 0.398 0.446 

Controls Full controls Full Controls Full Controls 

Estimator OLS OLS OLS 

 

Table A.7. Linear regression results for maize harvest per plot, log-level specification 

 Tanzania NPS 12/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 

Dependent Variable Ln(Maize harvest (kg)) Ln(Maize harvest (kg)) Ln(Maize harvest (kg)) 

Recall length, harvest 0.0211*** 0.0418*** 0.0768** 

 (0.00650) (0.00727) (0.0300) 

Observations 2,798 6,770 2,176 

Adjusted R-squared 0.254 0.259 0.374 

Controls Full controls Full controls Full Controls 

Estimator OLS OLS OLS 

 

Table A.8. Regression results for maize harvest per plot with quadratic recall length term 

  Tanzania NPS 12/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 

Dependent variable Maize harvest (kg) Maize harvest (kg) Maize harvest (kg) 

Recall length 19.57* 52.77*** -21.22 

 (10.62) (12.57) (43.76) 

(Recall length)2 -0.782 -2.494*** 3.032 

 (0.570) (0.728) (3.534) 

Observations 2,979 7,094 2,261 

Adjusted R-squared 0.188 0.399 0.446 

Controls Full controls Full Controls Full Controls 

Estimator OLS OLS OLS 

Joint F-Test 4.50 21.0 3.1 

 

Table A.9. Regression results for labor inputs, Tanzania NPS 2012/13 

 Dependent variable 

Total 

person-days 

Family 

person-days 

Hired labor  

(Y/N) 

Hired person-days 

(|>0) 

Hired 

person-days 

Recall length 1.626*** 1.286*** 0.00213 0.244 0.252 

 (0.276) (0.275) (0.00210) (0.174) (0.171) 

Observations 6,068 6,068 5,986 1,911 6,068 

Adjusted R-squared* 0.263 0.253 0.156 0.180 0.062 

Controls Full controls Full controls Full controls Full controls Full controls 

Estimator OLS OLS Probit OLS Tobit 
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 *Pseudo R-squared for Probit and Tobit 

Table A.10. Regression results for labor inputs, Malawi IHS4 2016/17 

  

Total 

person-days 

Family 

person-days 

Hired labor  

(Y/N) 

Hired person-days 

(|>0) 

Hired 

person-days 

Recall length 1.235*** 1.216*** 0.000141 0.0683 0.0581 

 (0.205) (0.202) (0.00165) (0.157) (0.140) 

Observations 10,331 10,331 10,278 1,394 10,331 

Adjusted R-squared* 0.387 0.359 0.298 0.316 0.145 

Controls Full controls Full controls Full controls Full controls Full controls 

Estimator OLS OLS Probit OLS Tobit 

*Pseudo R-squared for Probit and Tobit 

Table A.11. Total labor input, log-level specification. 

 Tanzania NPS 12/13 Malawi IHS4 2016/17 
Dependent Variable Log(Total person-days) Log(Total person-days) 

Recall length 0.0228*** 0.0280*** 
 (0.00388) (0.00369) 

Observations 5,938 10,363 

Adjusted R-squared 0.269 0.392 

Controls Full controls Full controls 

Estimator OLS OLS 

 

Table A.12. Regression results for labor inputs by activity, log-level specification, Tanzania NPS 2012/13 

Dependent Variable 

Preparation and planting 

ln(person-days) 

Weeding, fertilizing 

ln(person-days) 

Harvest and post-harvest 

ln(person-days) 

Recall length 0.0184*** 0.0245*** 0.0144*** 

 (0.00446) (0.00442) (0.00456) 

Observations 5,486 5,718 4,616 

R-squared 0.225 0.222 0.273 

Controls Full controls Full controls Full controls 

Estimator OLS OLS OLS 

 

Table A.13. Regression results for labor inputs by activity, log-level specification, Malawi IHS4 2016/17 

Dependent Variable 

Preparation and planting 

ln(person-days) 

Weeding, fertilizing 

ln(person-days) 

Harvest and post-harvest 

ln(person-days) 

Recall length 0.0249*** 0.0307*** 0.0253*** 

 (0.00401) (0.00410) (0.00417) 

Observations 9,915 9,893 9,763 

Adjusted R-squared 0.357 0.414 0.365 

Controls Full controls Full controls Full controls 

Estimator OLS OLS OLS 

 

Table A.14. Regression results for labor inputs by activity, log-level specification, Malawi IHPS 2016/17 

Dependent Variable 

Preparation and planting 

ln(person-days) 

Weeding, fertilizing 

ln(person-days) 

Harvest and post-harvest 

ln(person-days) 

Recall length 0.0300 0.104*** 0.0142 

  (0.0269) (0.0256) (0.0118) 

Observations 3,585 3,585 3,576 

Adjusted R-squared 0.357 0.343 0.306 

Controls Full controls Full controls Full controls 

Estimator OLS OLS OLS 
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Table A.15. Regression results for fertilizer inputs, Tanzania NPS 2012/13 

Dependent Variable 

Organic fertilizer 

(Y/N) 

Inorganic 

fertilizer (kg) 

Inorganic 

fertilizer (Y/N) 

Inorganic 

fertilizer (kg|>0) 

Recall length -0.00292** 3.722*** -0.00126 2.224 

  (0.00117) (0.940) (0.00122) (1.568) 

Observations 7,284 7,322 6,949 675 

Adj. R-squared* 0.168 0.064 0.281 0.233 

Controls Full controls Full controls Full controls Full controls 

Estimator Probit Tobit Probit OLS 

 *Pseudo R-squared for Probit and Tobit 

Table A.16. Regression results for fertilizer inputs, Malawi IHS4 2016/17 

Dependent Variable 

Organic 

Fertilizer (Y/N) 

Inorganic 

Fertilizer (kg) 

Inorganic 

Fertilizer (Y/N) 

Inorganic 

Fertilizer (kg|>0) 

Recall length -0.00176 -0.179 -0.00489* 0.900*** 

  (0.00210) (0.300) (0.00282) (0.302) 

Observations 10,215 10,331 10,229 5,498 

Adj. R-squared* 0.153 0.082 0.346 0.234 

Controls Full controls Full controls Full controls Full controls 

Estimator Probit Tobit Probit OLS 

 *Pseudo R-squared for Probit and Tobit 

Table A.17. Regression results for fertilizer inputs, Malawi IHPS 2016/17 

Dependent Variable 

Organic fertilizer 

(Y/N) 

Inorganic 

fertilizer (kg) 

Inorganic 

fertilizer (Y/N) 

Inorganic 

fertilizer (kg|>0) 

Recall length 0.00256 -1.308 -0.0337*** 4.304*** 

  (0.0105) (1.098) (0.00825) (1.105) 

Observations 3,364 3,585 3,421 2,186 

Adj. R-squared* 0.147 0.091 0.410 0.338 

Controls Full controls Full controls Full controls Full controls 

Estimator Probit Tobit Probit OLS 

 *Pseudo R-squared for Probit and Tobit 

Table A.18. Regression results for fertilizer inputs, log-level specification 

  Tanzania NPS 12/13 Malawi IHS4 2016/17 Malawi IHPS 2016/17 

Dependent Variable Ln(Inorganic fertilizer use (kg|>0)) 

Recall length 0.0187 0.0190*** 0.0884*** 
 (0.0154) (0.00562) (0.0248) 

Observations 675 5,498 2,185 

Adjusted R-squared 0.325 0.234 0.331 

Controls Full controls Full controls Full controls 

Estimator OLS OLS OLS 

 

Table A.19. Impact of longer recall length (longer fieldwork period) on productivity measures, plot-level 

 Tanzania NPS 12/13 – plot level Malawi IHS4 2016/17 – plot level 

Dependent Variable log(Y/T) log(Y/L) log(Y/I) log(Y/T) log(Y/L) log(Y/I) 

Fieldwork / Recall length 0.0311*** 0.00752 0.0239*** 0.0515*** 0.0275*** 0.0506*** 

 (0.00748) (0.00677) (0.00739) (0.00803) (0.00811) (0.00786) 

Observations 2,775 2,774 2,767 7,093 7,087 7,050 

Adjusted R-squared 0.240 0.245 0.258 0.289 0.336 0.335 

Controls Full controls Full controls Full controls Full Controls Full Controls Full Controls 

Estimator OLS OLS OLS OLS OLS OLS 
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Table A.20. Impact of longer recall length (longer fieldwork period) on productivity measures, farm-level 

 Tanzania NPS 12/13 – farm level Malawi IHS4 2016/17 – farm level 

Dependent Variable log(Y/T) log(Y/L) log(Y/I) log(Y/T) log(Y/L) log(Y/I) 

Fieldwork / Recall length 0.0224*** 0.0186** 0.0251*** 0.0531*** 0.0310*** 0.0299*** 

 (0.00753) (0.00743) (0.00757) (0.00756) (0.00759) (0.00728) 

Observations 1,877 1,875 1,871 5,790 5,786 5,763 

Adjusted R-squared 0.274 0.270 0.245 0.280 0.308 0.308 

Controls Full controls Full controls Full controls Full Controls Full Controls Full Controls 

Estimator OLS OLS OLS OLS OLS OLS 

 


