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Background

* Role of agriculture in rural livelihoods

* Byerlee et al. 2007, Davis, et al. 2017

Need for accurate, crop-specific measures of area under
cultivation, production and yields - not only at the national-
level but with enhanced within-country disaggregation

Surge in availability of high-resolution satellite imagery and
evidence on the feasibility of satellite-based monitoring of
agricultural outcomes in smallholder farming systems

* Need for data to train and validate the underlying models
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Background

* Role of agriculture in rural livelihoods
* Byerlee et al. 2007, Davis, et al. 2017

* Need for accurate, crop-specific measures of area under
cultivation, production and yields - not only at the national-
level but with enhanced within-country disaggregation

* Surge in availability of high-resolution satellite imagery and
evidence on the feasibility of satellite-based monitoring of
agricultural outcomes in smallholder farming systems DL

ays ours minutes

* Need for data to train and validate the underlying models i Sentinel-2 constellation:

summer solstice

* Evidence on the impact of training data on the quality and
spatial resolution of satellite-based estimates

* Lobell et al. 2019, 2020

* Research largely sub-national in scope, with heterogeneity in
the scope of and approach to ground data collection
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mapping across Malawi and Ethiopia

* Address several operational and inter-related research questions in the context of high-resolution maize area

What is the minimum volume of training data to reach an acceptable level of accuracy of a crop classification algorithm?
How does the approach to georeferencing plot locations in household surveys impact the accuracy of the same algorithm?
How do the type of satellite data and exclusion of plots under specific area thresholds affect the algorithmic accuracy?

* Inform the guidelines being developed under the 50x2030 initiative for the collection of georeferenced data in
large-scale surveys to train and validate earth observation models for high-resolution crop type mapping and
crop yield estimation in smallholder farming systems




Survey Data

-
(0]
HECEH

H{HH

:£50x2030

A-SEMART AGRICULTURE

» Georeferenced plot-level survey data stem from nationally-representative, multi-topic surveys that were
implemented by the Malawi NSO and the CSA of Ethiopia under the World Bank LSMS-ISA Initiative
Malawi Integrated Household Panel Survey (IHPS) 2019

Longitudinal sample, dating back to 2010
Reference season: 2018/19

Plot-level georeferenced information: Single plot corner point + plot boundaries

Malawi Fifth Integrated Household Survey (IHS5) 2019/20
Cross-sectional sample

Reference season: 2017/18 or 2018/19
Plot-level georeferenced information: Single plot corner point + plot boundaries
e Ethiopia Socioeconomic Survey (ESS) 2018/19

Baseline for a new longitudinal sample

Reference season: 2018 meher season

Plot-level georeferenced information: Single plot corner point



https://www.worldbank.org/en/programs/lsms/initiatives/lsms-ISA
http://bit.ly/ihps2019
http://bit.ly/ihs201920
http://bit/ly/ess201819
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Survey Data (2)

Table 2: THPS 2019 and IHS5 2019/20 rainy season plots by maize cultivation status,
conditional on being used for analysis

Table 1: IHPS 2019 and IHS5 2019/20 rainy season plots by georeferenced information availability

IHPS 2019 IHSS 2019/20
Plot category IHPS 2019 IHSS 2019/20
) Obs | % | Qbs | %
2018/19 2017/18 2018/19
Plots with no geolocation information 334 6.2 1.105 6.4 Season '
Plots with a corner point, but no polygon boundary 1365 254 | 4871 | 284 Crop type Obs % | Obs Yo Qbs %
Plots with a corner point and a pelygon boundary, but dropped from analysis | 874 | 16.3 | 2,139 | 12.5 Maize 2,033 | 728 | 2330 | 714 | 4222 | 729
‘ Plots with a corner point and a polygon boundary, used for analysis 2792 | 52.0 | 9,059 | 52.7 Non-maize 759 | 27.27] 935 | 286 | 1572 | 27.1
Total # of Plots 5365 | 100.0 | 17.174 | 100.0 Total # of Plots 2,792 | 100.0( 3,265 | 100.0 | 5,794 | 100.0
Total # of Associated Households 2,335 3.770 Total # of Associated Households 1,470 1,926 3,506
Table 3: ESS 2018/19 meher season plots by georeferenced mformation availability Table 4: ESS 2018/19 meher season plots by maize cultivation status,
ESS 2018/19 conditional on being used for analysis
Plot category
gony Obs o ESS 2018/19
— Crop type
Plots with no geolocation information 1.168 87 Obs %
Plots with a comer point, but dropped from analysis 299 22 Maize 1.867 | 15.7
mmm) | Plots with a corner point, used for analysis 11,905 89.0 Non-maize 10,038 | 843
Total # of Plots 13372 100.0 Total # of Plots 11,905 | 100.0
Total # of Associated Households 2,199 Total # of Associated Households 2,090




Data Collection Scenarios
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Input Imagery and Phenological Metrics

Satellite observations from Sentinel 2
(optical features) and Sentinel 1 (SAR
features), both at 10 m resolution.

We used harmonic regressions to process
time series of satellite features.

Harmonic regressions allow us to capture
phenological metrics (phase and amplitude)
by fitting a harmonic curve to the
observations.

Phase and amplitude are good
differentiators of the seasonality of different
crops.

We also added topography and seasonal
weather metrics.
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Data Collection Scenarios and Modeling

In Malawi, we tested a total of 26,250 scenarios:

* 7 geolocation methods - boundary points, centroid, convex
hull, corner, hull mean, plot points, and plot mean.

50 data subsets - 2% to 100% subsets of training data, at
an increment of 2% points.

. 5 area thresholds - 0, 0.05, 0.1, 0.15, and 0.2 ha.

» 3 feature types - optical only, radar only, both optical and
radar.

* 5replications to capture variability due to random
sampling

In Ethiopia, we tested a total of 250 scenarios - based on

findings from Malawi and availability of only corner points:

* 1 geolocation method - corner point

* 50 data subsets - 2% to 100% subsets of training data, at an
increment of 2% points.

* No area threshold, with optical data only

* b replications to capture variability due to random sampling

Figure 4: Distribution of plots across districts in a) train, b) validation, c) and test subsets
b)
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Notes: Color indicates number of plots.
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Results - Geolocation Methods and Sample Size
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*  With less than 1,000 plots: multi-point
approaches perform better. . ) ETFQ

* Greater than 2,000 plots: aggregation approaches
- plot mean (based on plot boundary) and hull
mean (based on all corner points) - outperform all.
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* Need about ~7,000 plots with a single corner
point to reach performance with ~3,000 plots
under aggregation approaches.
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Geolocation strategy

* Aggregation approaches had the fastest learning.

* Peak MCC can be achieved with ~ 60% of training
data (~4,000 plots) under plot mean (preferred)
and hull mean (second best).
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* Corner point-based findings are comparable
across Malawi and Ethiopia - though the peak
MCC for corner point was reached at 3,000 plots S elie,
as opposed to 4,500 in Malawi.
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Results - Plot Size

Limiting training data by excluding plots
under specific area thresholds decreases
performance.

Exception: convex hull approach - likely due
to geometrical approximation of plot
boundaries.
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Results - Satellite Type

boundary points centroid convex hull

* SAR alone generally lower performance.
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Small Differences, Large Consequences

 Small differences in model performance
may lead to large differences in estimated
areas.

* Multi-points methods tend to overclassify.

 Aggregated methods are more conservative.

* There is value in achieving small
performance gains anchored in better
training data.

Table 8: Malawi maize area as obtained by seven different classification models

Classification model Out of sample MCC Total maize area - 2018/19
rainy season (million ha)
Boundary points 0.21 2.27
Centroid 0.24 2.17
Convex hull 0.21 2.46
Corner 0.23 2.15
Hull mean 0.25 1.94
Plot points 0.24 2.41
Plot mean 0.26 1.99
Mean across models 0.23 2.19

Classification model Difference in out of Total area with
sample MCC disagreement (million ha)
Boundary points -0.05 0.84
Centroid -0.02 0.48
Convex hull -0.05 0.69
Corner -0.03 0.95
Hull mean -0.01 0.22
Plot points -0.02 0.55

$150x2030
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Conclusions

* Collecting a complete plot boundary is preferable to competing approaches to georeferencing plot locations in large-scale
household surveys. This is particularly true if collection capacity is limited to fewer locations.

* Seemingly-small erosion in maize classification accuracy under less preferable approaches to georeferencing plot locations
consistently results in total area under maize cultivation to be overestimated - in the range of 0.16 to 0.47 million hectares
(8 to 24 percent).

* Collecting GPS coordinates of the complete set of plot corners is a second-best strategy, can approximate full plot
boundaries and can in turn train models with comparable performance.

» C(Classification performance peaks with ~60% of the training data under preferred and second-best approaches to
georeferencing plot locations.

* If only a single GPS point can be collected, that location should be near the plot center rather than at the plot corner. With
large datasets, the performance could be comparable to that of complete plot boundaries.

* No plot observations should be excluded from model training based on a minimum plot area threshold.

* Optical features alone can provide sufficient signal to maximize prediction quality.

17
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Looking Forward

* Continuing research under the 50x2030 Initiative to ultimately inform the guidelines for surveys to enable satellite-based crop
type mapping and yield estimation in smallholder farming systems

* Improving accuracy of maize classification, including through expanded suite of machine learning approaches and geospatial covariates

* Leveraging additional existing large-scale survey data from Mali, Malawi and Uganda - with georeferenced plot outlines and objectives
measures of yields based on crop cutting - to:

* Expand crop classification to new countries and new cereals, including sorghum, millet, wheat and rice, to gauge the robustness of
our recommendations

« Conduct similar research to identify training data requirements for high-resolution yield estimation for maize and new cereals

* Documenting (a) the accuracy of out-of-season predictions (e.g., using 2017/18 data from Mali to predict 2018/19 outcomes to be
compared against actual 2018/19 data) and (b) the decay in model accuracy over time (i.e., over a 3-year period in Mali and Malawi)

» Continuing research on object-based classification and automated detection of plot boundaries to potentially simplify ground data
collection requirements

* Depending on the COVID-19 pandemic, potentially conducting additional survey experiments in 2022 in non-African settings to increase
the heterogeneity of farming systems subject to our research
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Open Access Data Assets

10-m resolution crop area and maize area maps for Malawi and Ethiopia for each
agricultural season from 2016 to 2019 on World Bank Development Data Hub

THEWORLD BANK ~ Development Data Hub

1y Datasets | (Y Talip - THE WORLDBANK  Development Data Hub

My Datasets OTaIip-

E # Data Collections Applications Getting Started FAQs ContactUs

a f Data Collections Applications Getting Started FAQs Contact Us

High-Resolution Crop And Maize Area Mapping For Ethiopia High-Resolution Crop And Maize Area Mapping For Malawi

== Add Resource [ Edit Draft == Add Resource (& edit Draft

DATA ACCESS AND LICENSING @ Back DATA ACCESS AND LICENSING
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This dataset is classified as Public This dataset is classified as Public

under the Access to Information

Classi and

ion Policy. Users in:
outside the Bank can access this
dataset.

This dataset is licensed under CC-BY
4.0

Azzari, G.,Jain, 5., Jeffries, G., Kilic, T.
and Murray, 5. (2021).

anding the Requirements

seys to Support Satellite-
Based Crop Type Mapping: Evidence
World

from Sub-Saharan Afr
Bank Policy Research Working Paper
No. 9609, LSMS Washington, DC:

SHARE METADATA

The information on this
dataset metadata) is also available in
these formats.

Published (Ver.2216456)

Linked to the research conducted under the Methods and Tools Component of the 50x2030 Initiative
thiz data deposit includes 10-meter spatial resolution maps for (i) areas cultivated with any ¢
h rainy season during the period of 2016-2019. The maps are a produd
et al. (2021), as part of the collaboration between the World Bank and Atlas Al in support of one of the objectives of the 50x2030
nitiative to create guidelines for the collection of minimum-required survey data for training and validating remote sensing models
for high-resolution crop type mapping and crop yield estimation ri et al. (2021) integrate Sentinel-2 satellite imagery and
complementary geospatial data with georeferenced plot-level data from national household surveys that were conducted by the
Malawi MNational Statistical Office and the Central Statistical Agency of Ethiopia during the period o 8-2020 in order to identify
the optimal appraach to collecting survey data for training a machine learning model to identify areas cultivated with maize. The
best performing model estimated by Azzari et al. (2021) has been used to generate the 10-meter spatial resolution maps that are
being made available here. For more information, please see the accompanying Basic Information Document and Azzari et al
(2021). Less...

(https:

Overview Data & Resources Additional Information Citations

,a Basic Information Document for crop and maize area mapping
Resource Type: Documentation Data Classification of File: Public

& Download | 8] Preview

Ethiopia maize mask for 2016
Pixels with probability of crop cultivation greater than or equal to 40 percent and probability of maize cultivation

greater than or equal to 50 percent.

Resource Type: Download Data Classification of File: Public

Go to Resource

http://bit.ly/ethiopiamaps

under the Access to Information
Classification Policy. Users inside and
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dataset.

This dataset is licensed under CC-BY
4.0
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Bank Policy Research Working Paper
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World Bank
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nitiative to create guidelines for the collection of minimum-required survey data for training and validating remote sensing models
for high-resolution crop type mapping and crop yield estimation. Azzari et al. (2021) integrate Sentinel-2 satellite imagery and
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Satellite-Based Crop Type Mapping: Evidence from Sub-Saharan Africa.” World Bank Policy Research Working Paper No. 9609, LSMS
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Basic Information Document for crop and maize area mapping
Resource Type: Documentation Data Classification of File: Public

4 Download | [§ Preview

Malawi maize mask for 2016
Pixels with probability of crop cultivation greater than or equal to 40 percent and probability of maize cultivation

greater than or equal to 60 percent.

http://bit.ly/malawimaps
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IMPLICATIONS FOR ETHIOPIA AND BEYOND

Highly relevant to developing countries like Ethiopia where agriculture’s
contribution to economy is significant.. Share of agriculture to GDP is
36.3%; rural population accounts for 78% of the total population

The research will:
* Help provide more accurate agricultural data which will result in effective

planning and monitoring in the sector

* Integrating remote sensing with survey data will provide geographically
disaggregated data which is highly required by policy makers

* Help provide timely data specially for forecasting crop area and production

and will also reduce workload in big farms
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IMPLICATIONS FOR ETHIOPIA AND BEYOND

* Ethiopia will exercise remote sensing to improve quality and timeliness of forecast
survey and commercial farm survey through 50x2030. These activities will be
considered in next survey round

* In Ethiopia, official source of agricultural data is Central Statistical Agency. CSA
and Ministry of Agriculture are working together to facilitate implementation of the
research planned for the use of remote sensing for forecasting and commercial
farms survey. Once the agreed methodology is designed, CSA will collect the data
and provide timely and quality data for the Ministry to monitor progress

* CSA and Ministry of Agriculture collaborating within the 50x2030 Country
Coordination Group. These activities are incorporated in the Program
Implementation Plan of the project

* For effective utilization of the research, developing countries should be supported
to produce georeferenced survey data; satellite imagery should be availed;
technical capacity required

.
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Christophe Duhamel
50x2030 Data Production Manager
Food and Agriculture Organization
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